

Químico de injeção HIT-HY 170

Dimensionamento (ou cálculo) de ancoragem (EN 1992-4) / Varões e Mangas / Betão

Sistema de químico de injeção

Hilti HIT-HY 170

Cartucho de 500 ml (também disponível em cartucho de 330 ml)

Varão de ancoragem: HAS-U HAS-U HDG HAS-U A4 HAS-U HCR (M8-M24)

Manga com rosca interna: HIS-N HIS-RN (M8-M16)

Vantagens

- Adequado para betão não fissurado ^{a)} e fissurado C 20/25 a C 50/60
- Adequado para betão seco e saturado de água
- Possíveis pequenas distâncias ao bordo e entre ancoragens
- Grande resistência à corrosão
- Intervalo de temperatura de serviço de até 80 °C a curto prazo/ 50°C a longo prazo

a) Aplicações apenas com varões HAS-U.

Material base

Betão (não fissurado)

Betão (fissurado) ^{a)}

Betão seco

Betão húmido

Condições de carga

Outras informações

Estática/ quase estática

Sísmica, ETA-C2

Condições de instalação

Furos perfurados por martelo

Perfuração de broca oca

Pequena dist. ao bordo e embebimento

Profundidade de embebimento variável

Avaliação Técnica Europeia

Marcação CE

Resistência à corrosão

Grande resistência à corrosão ^{a)}

a) Aplicações apenas com varões HAS-U.

Aprovações/certificados

Descrição	Autoridade/Laboratório	N.º/Data de emissão		
Avaliação Técnica Europeia a)	DIBt, Berlin, Germany	ETA-19/0465 / 2019-08-28		
Avaliação Técnica Europeia b)	DIBt, Berlin, Germany	ETA-14/0457 / 2017-12-14		

a) Todos os dados técnicos apresentados nesta secção estão de acordo com ETA-19/0465, edição de 2019-08-28.

Todos os dados técnicos apresentados nesta secção estão de acordo com ETA-14/0457, edição de 2017-12-14.

Valores resitentes de referência (para uma fixação isolada)

Todos os dados nesta secção aplicam-se para:

- Correta instalação (ver sequência de instalação)
- Sem influências de bordos e espaçamentos entre fixações
- Rotura do Aço
- Espessura do material base conforme especificado na tabela
- Uma profundidade de embebimento típica conforme especificado na tabela
- <u>Um</u> material de ancoragem conforme especificado nas tabelas
- Betão C 20/25, fck,cube = 25 N/mm²
- Intervalo de temperatura I (temp. mín. material base -40 °C, temp. máx. material base a longo/curto prazo: +24 °C/40 °C)

Profundidade de embebimento a)

Diâmetro da ancoragem			M8	M10	M12	M16	M20	M24
HAS-U								
Profundidade de embebimento	h _{ef}	[mm]	80	90	110	125	170	210
Espessura do material base	h	[mm]	110	120	140	160	220	270
HIS-N								
Profundidade de embebimento	h _{ef}	[mm]	90	110	125	170	-	-
Espessura do material base	h	[mm]	120	150	170	230	-	-

a) A gama de profundidade de embebimento permitida é apresentada nos detalhes de instalação.

Para furos perfurados com percussão, furos perfurados com percussão com a broca Hilti para material oco:

Resistência característica

Diâmetro do varão ro	oscado		M8	M10	M12	M16	M20	M24
Betão não fissurado								
	HAS-U 5.8		18,0	28,3	41,5	62,8	106,8	158,3
	HAS-U 8.8		20,1	28,3	41,5	62,8	106,8	158,3
Tração N _{Rk}	HAS-U A4	[kN]	20,1	28,3	41,5	62,8	106,8	158,3
	HAS-U HCR		20,1	28,3	41,5	62,8	106,8	158,3
	HIS-N 8.8		25	46,0	67,0	121,9	-	-
	HAS-U 5.8		9,0	15,0	21,0	39,0	61,0	88,0
Corte V _{Rk}	HAS-U 8.8		15,0	23,0	34,0	63,0	98,0	141
	HAS-U A4	[kN]	13,0	20,0	30,0	55,0	86,0	124
	HAS-U HCR		15,0	23,0	34,0	63,0	98,0	124
	HIS-N 8.8		13,0	23,0	34,0	63,0	-	-
Betão fissurado								
	HAS-U 5.8		-	15,6	22,8	34,6	-	-
Troope Na	HAS-U 8.8	[LAJ]	-	15,6	22,8	34,6	-	-
Tração N _{Rk}	HAS-U A4	[kN]	-	15,6	22,8	34,6	-	-
	HAS-U HCR		-	15,6	22,8	34,6	-	-
	HAS-U 5.8		-	15,0	21,0	39,0	-	-
Corte V _{Rk}	HAS-U 8.8	[LAJ]	-	23,0	34,0	63,0	-	-
	HAS-U A4	[kN]	-	20,0	30,0	55,0	-	-
	HAS-U HCR		-	23,0	34,0	63,0	-	-

Resistência de cálculo

Diâmetro do varão i	roscado		M8	M10	M12	M16	M20	M24
Betão não fissurado								
	HAS-U 5.8		12,0	18,8	27,6	41,9	71,2	99,8
	HAS-U 8.8		13,4	18,8	27,6	41,9	71,2	99,8
Tração N _{Rd}	HAS-U A4	[kN]	13,4	18,8	27,6	41,9	71,2	99,8
	HAS-U HCR		13,4	18,8	27,6	41,9	71,2	99,8
	HIS-N 8.8		16,7	30,7	44,7	72,7	-	1
Corte V _{Rd}	HAS-U 5.8		7,2	12,0	16,8	31,2	48,8	70,4
	HAS-U 8.8		12,0	18,4	27,2	50,4	78,4	112,8
	HAS-U A4	[kN]	8,3	12,8	19,2	35,3	55,1	79,5
	HAS-U HCR		12,0	18,4	27,2	50,4	78,4	70,9
	HIS-N 8.8	Ī	10,4	18,4	27,2	50,4	-	-
Betão fissurado								
	HAS-U 5.8		-	10,4	15,2	23,0	-	-
Trooão Na	HAS-U 8.8	[LAN]	-	10,4	15,2	23,0	-	-
Tração N _{Rd}	HAS-U A4	[kN]	-	10,4	15,2	23,0	-	-
	HAS-U HCR	•	-	10,4	15,2	23,0	-	-
	HAS-U 5.8		-	12,0	16,8	31,2	-	-
Corto Va	HAS-U 8.8	[LA]]	-	18,4	27,2	46,1	-	-
Corte V _{Rd}	HAS-U A4	[kN]	-	12,8	19,2	35,3	-	-
	HAS-U HCR	•	-	18,4	27,2	46,1	-	-

Cargas recomendadas a)

Cargas recomendadas -								
Diâmetro do varão rosca	ido		M8	M10	M12	M16	M20	M24
Betão não fissurado								
	HAS-U 5.8		8,6	13,5	19,7	29,9	50,9	71,3
	HAS-U 8.8		9,6	13,5	19,7	29,9	50,9	71,3
Tração N _{Rec}	HAS-U A4	[kN]	9,6	13,5	19,7	29,9	50,9	71,3
	HAS-U HCR	•	9,6	13,5	19,7	29,9	50,9	71,3
	HIS-N 8.8	•	11,9	21,9	31,9	51,9	-	-
Corte V _{Rec}	HAS-U 5.8		5,1	8,6	12,0	22,3	34,9	50,3
	HAS-U 8.8	•	8,6	13,1	19,4	36,0	56,0	80,6
	HAS-U A4	[kN]	6,0	9,2	13,7	25,2	39,4	56,8
	HAS-U HCR	-	8,6	13,1	19,4	36,0	56,0	50,6
	HIS-N 8.8		7,4	13,1	19,4	36,0	-	-
Betão fissurado								
	HAS-U 5.8		-	7,4	10,9	16,5	-	-
Troose N-	HAS-U 8.8	[LAN]	-	7,4	10,9	16,5	-	-
Tração N _{Rec}	HAS-U A4	[kN]	-	7,4	10,9	16,5	-	-
	HAS-U HCR	•	-	7,4	10,9	16,5	-	-
	HAS-U 5.8		-	8,6	12,0	22,3	-	-
Corte V _{Rec}	HAS-U 8.8	[LA]]	-	13,1	19,4	32,9	-	-
	HAS-U A4	[kN]	-	9,2	13,7	25,2	-	-
	HAS-U HCR		-	13,1	19,4	32,9	-	-

a) Coeficiente de segurança parcial para ações γ=1,4. O coeficiente de segurança parcial para ações depende do tipo de carga e deve ser retirado dos regulamentos nacionais.

Resistência Sísmica

Toda a informação desta secção aplica-se a:

- Furos perfurados com martelo e furtos perfurados com broca oca
- Correta instalação (ver sequência de instalação)
- Sem influências de distâncias ao bordo e espaçamentos entre fixações
- Rotura do Aço
- Espessura mínima do material base conforme especificado na tabela
- Betão C20/25, $f_{ck,cube} = 25 \text{ N/mm}^2$
- α_{gap} = 1,0 (com a anilha de enchimento Hilti)
- Intervalo de temperatura I: -40 °C to +40 °C (temperatura máxima de longo prazo +24 °C e temperatura máxima de curto prazo +40 °C

Profundidade de embebimento da ancoragem para categoria sísmica C2

Diâmetro do varão roscado		M8	M10	M12	M16	M20	M24
HAS-U							
Profundidade da ancoragem efetiva	[mm]	80	90	110	125	170	210
Espessura do material base	[mm]	110	120	140	160	220	270

Para perfuração com matertelo e broca oca:

Resistência caraterística para categoria sísmica C2

Diâmetro do varão roscado			M8	M10	M12	M16	M20	M24
Tração N _{Rk}	HAS-U 8.8, AM 8.8	[kN]	-	-	8,3	11,9	-	-
Out to W	HAS-U 8.8, AM 8.8 com anilha de enchimento	FL-N IT	-	-	28,0	46,0	-	-
Corte V _{Rk}	HAS-U 8.8, AM 8.8 sem anilha de enchimento	- [kN] -	-	-	24,0	40,0	-	-

Resistência de cálculo para categoria sísmica C2

Diâmetro do varão roscado			M8	M10	M12	M16	M20	M24
Tração N _{Rd}	HAS-U 8.8, AM 8.8	[kN]	-	-	5,5	8,0	-	-
0-4-1	HAS-U 8.8, AM 8.8 com anilha de enchimento	[LAI]	-	-	22,4	36,8	-	1
Corte V _{Rd}	HAS-U 8.8, AM 8.8 sem anilha de enchimento	– [kN] -	-	-	19,2	32,0	-	-

Materiais

Propriedades do material para HAS-U

Diâmetro da ancoragem			M8	M10	M12	M16	M20	M24
Resistência à tração nominal f _{uk}	HAS-U 5.8		500	500	500	500	500	500
	HAS-U 8.8	- - [N/mm²]	800	800	800	800	800	800
	HAS-U A4	[14/11111-]	700	700	700	700	700	700
	HAS-U-HCR	_	800	800	800	800	800	700
	HAS-U 5.8		400	400	400	400	400	400
Limite elástico f _{vk}	HAS-U 8.8	- - [N/mm²]	640	640	640	640	640	640
Littlite elastico lyk	HAS-U A4	- [14/11111-]	450	450	450	450	450	450
	HAS-U HCR	=	640	640	640	640	640	400
Área de secção ao corte	HAS-U	[mm²]	36,6	58,0	84,3	157	245	353
Momento resistente W	HAS-U	[mm³]	31,2	62,3	109	277	541	935

Propriedades mecânicas do HIS-N

1 Topricuades inceam	<u> </u>					
Diâmetro da ancorago	em		M8	M10	M12	M16
	HIS-N		490	490	490	490
Resistência à tração nominal f _{uk}	Parafuso 8.8		800	800	800	800
	HIS-RN	[N/mm²]	700	700	700	700
	Parafuso A4-70		700	700	700	700
	HIS-N		390	390	390	390
	Parafuso 8.8		640	640	640	640
Limite elástico fyk	HIS-RN	[N/mm²]	350	350	350	350
	Parafuso A4-70		450	450	450	450
Área da secção ao	HIS-(R)N	[mm2]	51,5	108,0	169,1	256,1
corte As	Parafuso	– [mm²]	36,6	58	84,3	157
Momento resistente W	HIS-(R)N	– [mm³]	145	430	840	1595
INIOMENIO JESISIEMIE W	Parafuso	_ [1111119]	31,2	62,3	109	277

Qualidade do material para HAS-U

Varão roscado	Material	
Aço galvanizado		
Varão roscado, HAS-U 5.8 (HDG)	Classe de resistência 5.8; Alongamento até à rotura A5 > 8% dúctil Aço galvanizado ≥ 5μm; (F) galvanizado a quente ≥ 45 μm	
Varão roscado, HAS-U 8.8 (HDG)	Classe de resistência 8.8; Alongamento até à rotura A5 > 12% dúctil Aço galvanizado ≥ 5μm; (F) galvanizado a quente ≥ 45 μm	
Varão roscado a metro Hilti AM 8.8 (HDG)	Classe de resistência 8.8; Alongamento até à rotura A5 > 12% dúctil Aço galvanizado ≥ 5μm (HDG) galvanizado a quente ≥ 45 μm	
Anilha	Aço galvanizado ≥ 5 μm; galvanizado a quente ≥ 45 μm	
Porca	Classe de resistência da porca adaptada à classe de resistência do varão roscado. Aço galvanizado ≥ 5μm; galvanizado a quente ≥ 45 μm	
Anilha de Enchimento (HDG)	Anilha de enchimento: Aço galvanizado ≥ 5μm, (F) galvanizado a quente ≥ 45 μm Anilha especial: Aço galvanizado ≥ 5μm, (F) galvanizado a quente ≥ 45 μm Lock nut: aço galvanizado ≥ 5μm, (F) galvanizado a quente ≥ 45 μm	
Aço inoxidável		
Varão roscado, HAS-U A4	Classe de resistência 70 para ≤ M24 e classe de resistência 50 para > M24; Alongamento até à rotura A5 > 8% dúctil Aço inoxidável 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362	
Anilha	Aço inoxidável 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014	
Porca	Aço inoxidável 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014	
Aço de grande resistênc	ia à corrosão	
Varão roscado, HAS-U-HCR Classe de resistência 80 para ≤ M20 e classe de resistência 70 para > M20, Alongamento até à rotura A5 > 8% dúctil Aço de grande resistência à corrosão 1.4529; 1.4565;		
Anilha	Aço de grande resistência à corrosão 1.4529, 1.4565 EN 10088-1:2014	
Porca	Aço de grande resistência à corrosão 1.4529, 1.4565 EN 10088-1:2014	

Qualidade do material para HIS-N

Manga	·	Material					
HIS-N	Manga com rosca interna	Aço carbono 1.0718/Aço galvanizado ≥ 5 μm					
	Parafuso 8.8	Classe de resistência 8.8, A5 > 8% dúctil/Aço galvanizado ≥ 5 µm					
HIS-RN	Manga com rosca interna	Aço inoxidável 1.4401,1.4571					
Parafuso 70		Classe de resistência 70; A5 > 8% dúctil Aço inoxidável 1.4401; 1.4404, 1.4578; 1.4571; 1.4439; 1.4362					

Informações de instalação

Intervalo de temperatura de instalação

-5 °C a +40 °C

Intervalo de temperatura de serviço

O químico de injeção Hilti HIT-HY 170 com o varão de ancoragem HAS-U pode ser aplicado dentro dos intervalos de temperatura abaixo indicadas. Uma temperatura elevada do material base leva a uma redução da resistência de cálculo de aderência.

Temperatura no material base

Intervalo de temperatura	Temperatura do material base	Temperatura máxima do material base a longo prazo	Temperatura máxima do material base a curto prazo
Intervalo de temperatura I	-40 °C a +40 °C	+24 °C	+40 °C
Intervalo de temperatura II	-40 °C a +80 °C	+50 °C	+80 °C

Temperatura máx. do material base a curto prazo

As elevadas temperaturas do material base a curto prazo são as que ocorrem durante breves intervalos, por exemplo, como resultado de ciclos diurnos.

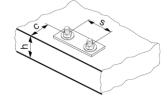
Temperatura máx. do material base a longo prazo

As elevadas temperaturas do material base a longo prazo são relativamente constantes durante períodos de tempo significativos.

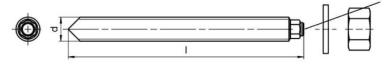
Tempo de atuação e de cura a)

Temperatura do	Tempo de atuação máximo	Tempo de cura máximo
material base	t _{work}	t _{cure}
-5 °C ≤ T _{BM} ≤ 0 °C ^{a)}	10 min	12 h
0 °C ≤ T _{BM} ≤ 5 °C a)	10 min	5 h
5 °C ≤ T _{BM} ≤ 10 °C	8 min	2,5 h
10 °C ≤ T _{BM} ≤ 20 °C	5 min	1,5 h
20 °C ≤ T _{BM} ≤ 30 °C	3 min	45 min.
30 °C ≤ T _{BM} ≤ 40 °C	2 min	30 min.

a) Os valores do tempo de cura são válidos apenas para o material base seco. Para o material base húmido, os tempos de cura têm de ser duplicados.


Detalhes de instalação para HAS-U

Diâmetro da ancoragem			M8	M10	M12	M16	M20	M24
Diâmetro nominal da broca	d_0	[mm]	10	12	14	18	22	28
Diâmetro do elemento	d	[mm]	8	10	12	16	20	24
Profun. embebimento efet. e	h _{ef,min}	[mm]	60	60	70	80	90	96
profun. do furo ^{a)}	h _{ef,ma}	[mm]	96	120	144	192	240	288
Espessura mín. material base	h _{min}	[mm]	h _{ef} +	30 mm ≥100) mm		h _{ef} + 2 d ₀	
Diâmetro máx. do furo na chapa	df	[mm]	9	12	14	18	22	26
Torque de aperto máx. b)	T _{max}	[mm]	10	20	40	80	150	200
Espaçamento mín.	Smin	[mm]	40	50	60	75	90	115
Distância mín. ao bordo	C _{min}	[mm]	40	45	45	50	55	60
Espaçamento crítico para rotura por fendilhação	Scr,sp	[mm]			2 c	cr,sp		
			1,0 · h₀	ef po	or h/h _{ef} ≥ 2,0)0 h/h _{nom}		
Distância crítica ao bordo para rotura por fendilhação c)	Ccr,sp	[mm]	4,6 h _{ef} – 1	1 ,8 h por 2	2,00 > h/h _{ef} 2	> 1,3 1,35		
			2,26 h	ef P	or h/h _{ef} ≤ 1,	3	1,5·h _{nom}	3,5·h _{nom} c _{cr,sp}
Espaçamento crítico para rotura por cone de betão	S _{cr,N}	[mm]			2 c	cr,sp		
Distância crítica ao bordo para rotura por cone de betão d	C _{cr} ,N	[mm]	1,5 h _{ef}					


As resistências de cálculo devem ser reduzidas para espaçamentos (distância ao bordo) menores do que o espaçamento crítico (distância ao bordo crítica).h_{ef,min} ≤ h_{ef} ≤ h_{ef,max} (h_{ef}: profundidade de embebimento)

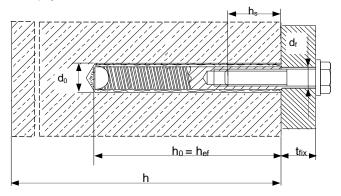
a) Torque de aperto máximo recomendado para evitar a rotura por fendilhação durante a instalação com

- distância ao bordo e espaçamento mínimo
- h: espessura do material base ($h \ge h_{min}$) A distância crítica ao bordo para rotura por cone de betão depende da profundidade de embebimento h_{ef} e da resistência de cálculo de aderência. A fórmula simplificada indicada nesta tabela é conservadora.

HAS-U...

Steel grade number and length identification letter: e.g. 8L

8.8 MA



Detalhes de instalação para HIS-N

Diâmetro da ancoragem			M8	M10	M12	M16	
Diâmetro nominal da broca	d_0	[mm]	14	18	22	28	
Diâmetro do elemento	d	[mm]	12,5	16,5	20,5	25,4	
Profun. embebimento efet. e	hef	[mm]	90	110	125	170	
profun. do furo ^{a)}	$h_{\text{min}} \\$	[mm]	120	150	170	230	
Diâmetro do furo na chapa	df	[mm]	9	12	14	18	
Comprimento do encaixe da rosca; mín.–máx.	hs	[mm]	8-20	10-25	12-30	16-40	
Espaçamento mín.	Smin	[mm]	60	75	90	115	
Distância mín. ao bordo	Cmin	[mm]	40	45	55	65	
Espaçamento crítico para rotura por fendilhação	Scr,sp	[mm]	2 C _{cr,sp}				
			1,0 ⋅ h _{ef}	por h/h _{ef} ≥ 2,	,0 h/h _{ef}		
Distância crítica ao bordo para rotura por fendilhação ^{a)}	C _{cr,sp}	[mm]	4,6 h _{ef} - 1,8 h	por 2,0 > h/h _{ef} >	> 1,3		
			2,26 h _{ef}	por h/h _{ef} ≤ 1,	,3	1,0·h _{ef} 2,26·h _{ef} c _{cr,sp}	
Espaçamento crítico para rotura por cone de betão	S _{cr,N}	[mm]		2 0	cr,N		
Distância crítica ao bordo para rotura por cone de betão b)	Ccr,N	[mm]	1,5 h _{ef}				
Torque de aperto c)	T _{max}	[Nm]	10	20	40	80	

As resistências de cálculo devem ser reduzidas para espaçamentos (distância ao bordo) menores do que o espaçamento crítico (distância ao

- h: espessura do material base (h ≥ h_{min}), h_{ef}: profundidade de embebimento A distância crítica ao bordo para rotura por cone de betão depende da profundidade de b) embebimento hef e da resistência de cálculo de aderência. A fórmula simplificada indicada nesta tabela é conservadora.
- Torque de aperto máximo recomendado para evitar a rotura por fendilhação durante a instalação com distância ao bordo e/ou espaçamento mínimo c)

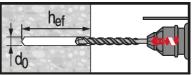
Equipamento de instalação

Diâmetro da ancoragem		M8	M10	M12	M16	M20	M24	
Martelo	HAS-U	TE 2 (-A) – TE 30 (-A)				TE 40 - TE 80		
eletropneumático (com percussão)	HIS-N	TE 2 (-A) -	TE 30 (-A)	TE 40	- TE 80	-		
Outro equipamente		Pistola de ar comprimido e bomba de limpeza,						
Outro equipament	Outro equipamento		conjunto de escovas de limpeza, dispensador					

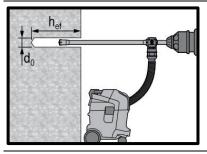
Parâmetros de perfuração e limpeza

		Diâmetros de	brocas d₀ [mm]	Tamanho de instalação [mm]		
HAS-U HIS-N		Martelo Perfuração com Eletropneumático broca oca		Escova HIT-RB	Êmbolo HIT-SZ	
naramanum [] in	DARRESONGHADIA					
M8	-	10	-	10	-	
M10	-	12	-	12	12	
M12	M8	14	14	14	14	
M16	M10	18	18	18	18	
M20	M12	22	22	22	22	
M24	M16	28	28	28	28	

Instruções de instalação

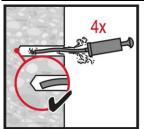

*Consultar as instruções de utilização na caixa do produto para obter informações detalhadas sobre a instalação

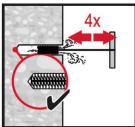
Regulamentos de segurança

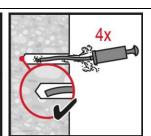

Consultar a Ficha de dados de segurança antes de aplicar o produto para garantir um manuseamento adequado e seguro. Deve usar óculos e luvas de proteção adequados quando trabalhar com o Hilti HIT-HY 170.

<u>Perfuração</u>

Furo perfurado por martelo (com percussão)


Para betão seco e húmido.

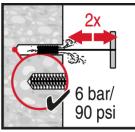


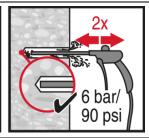

Furo perfurado por martelo com broca oca

Não necessita de limpeza.

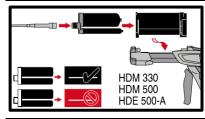
Limpeza

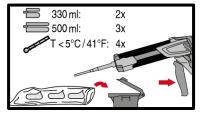




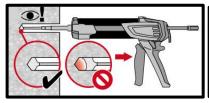

Limpeza manual

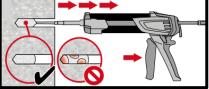
Apenas para betão não fissurado para perfurações de diâmetros de $_0 \le 18$ mm e furos com profundidade $h_0 \le 10$ ·d.

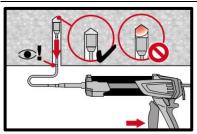


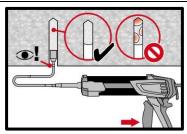


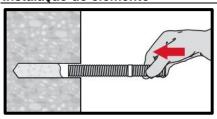
Limpeza a ar comprimido

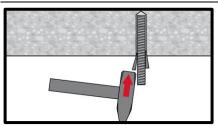

para perfurações de todos os diâmetros d_0 e todas as profundidades de furos h_0 .


Injeção

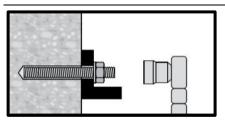



Preparação do sistema de **injeção**.


Método de injeção para furo perfurado



Método de **injeção** para aplicação acima do nível da cabeça e/ou instalação com profundidade de embebimento $h_{\text{ef}} > 250$ mm.


Instalação do elemento

Ao instalar o elemento, respeitar o tempo de atuação "twork".

Instalação do elemento para aplicações acima do nível da cabeça

Carga sobre a ancoragem após o tempo de cura necessário t_{cure}

Químico de injeção HIT-HY 170

Dimensionamento (ou cálculo) de ancoragem (ETAG 029) / Varões e Mangas / Alvenaria

Sistema de químico de injeção

Hilti HIT-HY 170

Cartucho de 500 ml (também disponível em cartucho de 330 ml)

Varão de ancoragem: HIT-V HIT-V-F HIT-V-R HIT-V-HCR (M8-M12)Manga com rosca interna: HIT-IC (M8-M12)

HIT-SC camisa perfurada (16-22)

Vantagens

- Fixação por injeção de químico para os tipos mais comuns de materiais base:
- Tijolos de barro ocos e maciços, blocos de silicato de cálcio, blocos de betão normais e leves
- Químico híbrido de dois componentes
- Manuseamento fácil com o dispensador HDE
- Controlo de enchimento de químico com camisas HIT-SC

Material base

Tijolo maciço

Tijolo oco

Condições de carga

Outras informações

Estática/ quase estática

Condições de instalação

por martelo

Furos perfurados Pequena dist. ao bordo e embebimento

Profundidade de embebimento variável

Avaliação Técnica Europeia

Marcação CE

Resistência à corrosão

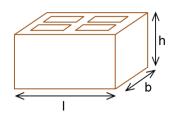
Grande resistência à corrosão

Software de dimensiona mento **PROFIS** Anchor

Aprovações/certificados

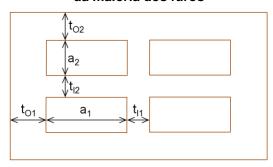
Descrição	Autoridade/Laboratório	N.º/Data de emissão
European technical Approval	DIBt, Berlin, Germany	ETA-15/0197 / 2015-12-09

Todos os dados técnicos apresentados nesta secção estão de acordo com ETA-15/0197, edição de 2015-12-09.



Tipos de tijolos e propriedades

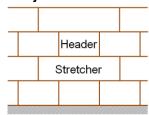
Instruções sobre estes dados técnicos


- Identifique/escolha o tijolo (ou tipo de tijolo) e as suas propriedades geométricas/físicas nas tabelas seguintes.
 Estão disponíveis na página 4 informações sobre critérios de bordos e espaçamento para todos os tijolos.
- As páginas referidas na última coluna da tabela abaixo contêm as cargas de resistência de cálculo relativas à rotura por extração ao arranque da ancoragem, rotura pelo tijolo e rotura de tijolo localizada, relativo a cada tipo de tijolo. Tenha em atenção que os dados indicados nestas tabelas são válidos apenas para fixações únicas com uma distância ao bordo igual ou superior a c_{cr}. Para os outros casos não indicados, utilize o software PROFIS Anchor, consulte a ETA-15/0197 ou contacte o Departamento de Engenharia da Hilti.
- As cargas de resistência indicadas neste manual de dados técnicos são válidas apenas para a mesma unidade de alvenaria (tijolo oco) ou para as unidades feitas do mesmo material base com tamanho e resistência à compressão iguais ou superiores (tijolo maciço). Para os outros casos, é necessário realizar testes no local. Consulte a página 8.

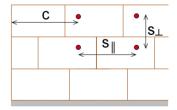
Dimensões exteriores do tijolo

Tijolos genéricos

Dimensões interiores da maioria dos furos


Tipos de tijolos e propriedades

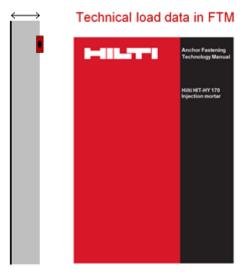
Código		Nome do		Dimensões	to	tı	а	fb	ρ	
do tijolo	Dados	tijolo	Imagem	[mm]	[mm]	[mm]	[mm]	[N/mm2]	[kg/dm3]	Página
_	Barro maciço									
SC	ETA	Tijolo de barro maciço Mz, 2DF		c: ≥ 240 l: ≥ 115 a: ≥ 113	-	-	-	12	2,0	17
Barro oco										
НС	ETA	Tijolo de barro oco Hlz, 10DF		c: 300 l: 240 a: 238	t ₀₁ :12 t ₀₂ :15	t _{l1} :11 t _{l2} :15	a ₁: 10 a ₂: 25	12/20	1,4	17
Silicato de	cálcio m	aciço								
SCS	ETA	Tijolo de sílica maciça KS, 2DF		c: ≥ 240 l: ≥ 115 a: ≥ 113	-	-	-	12/28	2,0	17
Silicato de	cálcio o	со								
HCS	ETA	Tijolo de sílica oca KSL, 8DF	Hill	c: 248 l: 240 a: 238	to1:34 to2:21	t ₁₁ :12 t ₁₂ :30	a ₁ : 50 a ₂ : 50	12/20	1,4	17
Betão leve	ОСО									
HLWC	ETA	Tijolo de betão leve oco	1	c: 495 l: 240 a: 238	t ₀₁ :45 t ₀₂ :51	t _{l1} :35 t _{l2} :36	a ₁ :196 a ₂ : 52	2/6	0,8	18
Betão de p	eso norr	nal oco								
HNWC	ETA	Tijolo de betão de peso normal oco	***	c: 500 l: 200 a: 200	to1:30 to2:15	t ₁₁ :15 t ₁₂ :15	a ₁:133 a ₂: 75	4/10	1,0	18


Parâmetros de instalação da ancoragem

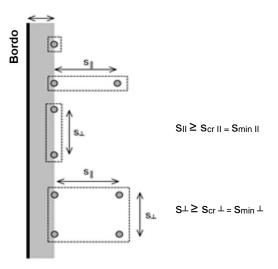
Posição do tijolo:

- Header (H): A dimensão mais longa do tijolo representa a largura da parede
- Stretcher (S): A dimensão mais longa do tijolo representa o comprimento da parede

Distância ao bordo e espaçamento:


- c Distância ao bordo
- s | Espaçamento paralelo à junta horizontal
- s ⊥ Espaçamento perpendicular à junta horizontal

Parâmetros mínimos e caraterísticos de espaçamento e distância ao bordo


- c_{min} Distância mínima ao bordo
- c_{cr} Distância ao bordo caraterística
- s_{min} | Distância mínima de espaçamento paralelo à junta horizontal
- s_{cr} | Distância de espaçamento caraterística paralelo à junta horizontal
- s_{min} + Distância mínima de espaçamento perpendicular à junta horizontal
- s_{cr} ⊥ Distância de espaçamento caraterística perpendicular à junta horizontal

Posições de ancoragem permitidas:

 $c \geq c_{\text{cr}} = c_{\text{min}}$

 $C \ge C_{cr} = C_{min}$

 Este FTM inclui os dados de carga para fixações únicas em alvenaria com uma distância ao bordo igual a ou superior à distância caraterística ao bordo.

- $SII \geq S_{CI} II = S_{min} II$
- $S\perp \geq S_{Cr}\perp = S_{min}\perp$

Distâncias ao bordo e de espaçamento por tijolo

Código do tijolo	C _{min} = C _{cr} [mm]	S _{minil} = S _{cril} [mm]	S _{min} ⊥= S _{cr} ⊥ [mm]
SC	115	240	115
HC	150	300	240
SCS	115	240	115
HCS	125	248	240
HLC	250	240	240
HNC	200	200	200

Dimensões do varão

Diâmetro da ancoragem-			M8	M10	M12
Profundidade de embebimento HIT-V(R, HCR)	h _{ef}	[mm]		80	
Profundidade de embebimento HIT-IT	h _{ef}	[mm]		80	

Cálculo

- As ancoragens são desenhadas sob a responsabilidade de um engenheiro experiente em ancoragens e em trabalhos de alvenaria.
- As notas e esquemas de cálculos que podem ser consultadas são preparadas tendo em consideração as cargas a serem ancoradas. A posição da ancoragem está indicada nos esquemas de design (por ex., a posição da ancoragem em relação aos suportes, etc.).
- As ancoragens sobre cargas estáticas ou quase estáticas são desenhadas em conformidade com: ETAG 029, Anexo C, Método de design A.

Valores de resistência de referência (para uma fixação isolada)

As tabelas de cargas indicam valores de resistência de cálculo para uma ancoragem isolada com carga.

Todos os dados nesta secção aplicam-se para:

- Distância ao bordo c ≥ c_{cr} = c_{min}.
- Instalação com a ancoragem correta (ver instruções de utilização, detalhes de instalação)

Ancoragens	sujeitas a:	Hilti HIT-HY 170 com HIT-V ou HIT-IC					
Alvenaria		em tijolo maciço		em tijolo oco			
Perfuração de furos		modo perfuração	com percussão	modo perfuração só com rotação			
Categoria de utilização: estrutura seca ou molhada		internas secas . Categoria w/d - Inst a	Categoria d/d - Instalação e utilização em estruturas sujeitas a condições internas secas. Categoria w/d - Instalação em substrato seco ou húmido e utilização em estruturas sujeitas a condições internas secas.				
		Categoria w/w - Instalação e utilização em estruturas sujeitas a condições ambientais secas ou húmidas .					
Direção de in	stalação	horizontal					
Categoria de	utilização	b (alvenaria maciça)		c (alvenaria oca ou perfurada)			
Temperatura base durante		+5° C a +40° C		-5° C a +40° C			
Temperatura	Intervalo de temperatura Ta:	-40 °C a +40 °C	(temperatura máx. a longo prazo de +24 °C e (temperatura máx. a curto prazo de +40 °C)				
de serviço	Intervalo de temperatura Tb:	-40 °C a +80°C	(temperatura máx. a longo prazo de +50 °C e (temperatura máx. a curto prazo de +80 °C)				

Tração

A resistência de cálculo à tração é o valor menor de

Resistência do aço: N_{Rd,s}
 Extração da fixação: N_{Rd,p}
 Rotura por quebra do tijolo: N_{Rd,b}
 Extração de um tijolo N_{Rd,pb}

Corte

A resistência de cálculo de corte é o valor menor de

- Resistência do aço: $V_{Rd,s}$ - Rotura de tijolo local: $V_{Rd,b}$ - Separação de um tijolo: $V_{Rd,pb}$

Resistências de cálculo à tração e de corte - Rotura do aço para HIT-V

Diâmetro da a	Diâmetro da ancoragem			M10	M12
	HIT-V 5.8(F)		12,2	19,3	28,1
Troose N.	HIT-V 8.8(F)	FIZNIT	19,5	30,9	44,9
Tração N _{Rd,s}	HIT-V-R	[kN]	13,7	21,7	31,6
	HIT-V-HCR		19,5	30,9	44,9
	HIT-V 5.8(F)		7,4	11,6	16,9
Corte V _{Rd.s}	HIT-V 8.8(F)	- [kN]	11,7	18,6	27,0
Corte VRd,s	HIT-V-R		8,2	13,0	18,9
	HIT-V-HCR		11,7	18,6	27,0
	HIT-V 5.8(F)		15,0	29,9	52,4
N40	HIT-V 8.8(F)	[Nm]	24,0	47,8	83,8
M ⁰ Rd,s	HIT-V-R		16,9	33,6	59,0
	HIT-V-HCR		24,0	47,8	83,8

Resistências de cálculo à tração e de corte - Rotura do aço para mangas com rosca interna HIT-IC

Diâmetro da ancoragem			M8	M10	M12
Tensão N _{Rd,s}	HIT-IC	[kN]	3,9	4,8	9,1
Corte V _{Rd,s}	HIT-IC	[kN]	7,4	11,6	16,9
	Parafuso 8.8		11,7	18,6	27,0
M ⁰ _{Rd,s}	HIT-IC	[N.I.a.a.]	15,0	29,9	52,4
	Parafuso 8.8	[Nm]	24,0	47,8	83,8

Resistências de cálculo à tração e de corte – Rotura por extração da ancoragem, rotura por quebra do tijolo e rotura de tijolo local à distância ao bordo caraterística (c \geq c_{cr} = c_{min}) para aplicações de uma fixação

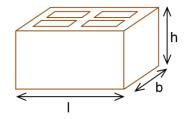
				f _b	w/w	e w/d	d/d	
Tipo de carga	Diâmetro da anco	oragem	h _{ef} [mm]		Та	Tb	Та	Tb
			[]	[[[]]]		Carga	s [kN]	
	SC - Tijolo de barr Mz, 2DF	o maciço						
	HIT-V	M8, M10, M12			1,2	1,0	1,2	1,0
	HIT-IC	M8			1,2	1,0	1,2	1,0
$N_{Rd,p} = N_{Rd,b}$ $(C_{cr} = C_{min} = 115 \text{ mm})$	HIT-IC	M10, M12	80	12	1,6	1,4	1,6	1,4
	HIT-V + HIT-SC	M8, M10, M12			1,6	1,4	1,6	1,4
	HIT-IC + HIT-SC	M8, M10, M12			1,6	1,4	1,6	1,4
V _{Rd,b} (c _{cr} = c _{min} = 115 mm)	HIT-V HIT-V + HIT-SC HIT-IC HIT-IC + HIT-SC	M8, M10, M12 M8, M10, M12 M8, M10, M12 M8, M10, M12	80	12		1,	4	
	HC - Tijolo de barr Hlz, 10DF	0 000						
$N_{Rd,p} = N_{Rd,b}$	HIT-V + HIT-SC	M8, M10, M12	80	12	1,2	1,0	1,2	1,0
$(c_{cr} = c_{min} = 150 \text{ mm})$	HIT-IC + HIT-SC	M8, M10, M12		20	1,4	1,2	1,4	1,2
V _{Rd,b}	HIT-V + HIT-SC	M8, M10, M12	80	12	0,8			
$(c_{cr} = c_{min} = 150 \text{ mm})$	HIT-IC + HIT-SC	M8, M10, M12		20		1,	2	
	SCS – Tijolo de síl KS, 2DF	ica maciça						
	HIT-V	M8, M10, M12		12	2,2	2,0	2,4	2,0
$N_{Rd,p} = N_{Rd,b}$	HIT-IC	M8, M10, M12	80	28	3,4	3,0	3,4	3,0
$(c_{cr} = c_{min} = 115 \text{ mm})$	HIT-V + HIT-SC	M8, M10, M12		12	1,6	1,4	2,2	2,0
	HIT-IC + HIT-SC	M8, M10, M12		28	2,4	2,2	3,2	3,0
V _{Rd,b}	HIT-V HIT-V + HIT-SC	M8, M10, M12 M8, M10, M12	80	12		1,	6	
$(c_{cr} = c_{min} = 115 \text{ mm})$	HIT-IC HIT-IC + HIT-SC	M8, M10, M12 M8, M10, M12	00	28		2,4		
	HCS – Tijolo de síl KSL, 8DF	ica oca						
$\mathbf{N}_{Rd,p} = \mathbf{N}_{Rd,b}$	HIT-V + HIT-SC	M8, M10, M12	80	12	1,2	1,0	1,4	1,2
$(c_{cr} = c_{min} = 125 \text{ mm})$	HIT-IC + HIT-SC	M8, M10, M12	00	20	1,6	1,4	2,0	1,8
$V_{Rd,b}$	HIT-V + HIT-SC	M8, M10, M12	80	12		3,4		
$(c_{cr} = c_{min} = 125 \text{ mm})$	HIT-IC + HIT-SC	M8, M10, M12	00	20	4,8			

			L		w/w e w/d		d/d			
Tipo de carga	Diâmetro da anco	ragem	h _{ef} [mm]	f _b [N/mm²]	Та	Tb	Ta	Tb		
			[111111]	[14/11111]		Carga	s [kN]			
	HLWC – Tijolo de b HBL, 16DF	HLWC – Tijolo de betão leve oco HBL, 16DF								
$N_{Rd,p} = N_{Rd,b}$	HIT-V + HIT-SC	M8, M10, M12	90	2	0,5	0,4	0,6	0,5		
$(c_{cr} = c_{min} = 250 \text{ mm})$	HIT-IC + HIT-SC	M8, M10, M12	80	6	0,8	0,6	1,0	0,8		
$V_{Rd,b}$	HIT-V + HIT-SC	M8, M10, M12	80	2	1,0					
$(c_{cr} = c_{min} = 250 \text{ mm})$	HIT-IC + HIT-SC	M8, M10, M12	00	6	1,6					
	HNWC – Tijolo de betão de peso normal oco Parpaing creux									
$N_{Rd,p} = N_{Rd,b}$	HIT-V + HIT-SC	M8, M10, M12	80	4	0,4					
$(c_{cr} = c_{min} = 200 \text{ mm})$	HIT-IC + HIT-SC	M8, M10, M12	60	10	0	,5	0,	6		
$V_{Rd,b}$	HIT-V + HIT-SC	M8, M10, M12	80	4	1,0					
$(c_{cr} = c_{min} = 200 \text{ mm})$	HIT-IC + HIT-SC	M8, M10, M12	00	10	1,6					

Resistências de cálculo à tração e de corte - Roturas por extração e por separação de um tijolo

Extração de um tijolo (tração):

 $N_{Rd,pb} = 2 \cdot I \cdot b \cdot (0.5 \cdot f_{vko} + 0.4 \cdot \sigma_d)/(2.5 \cdot 1000)$ [kN]


 $\begin{array}{l} N_{Rd,pb}{}^{*} = (2 \cdot I \cdot b \cdot (0.5 \cdot f_{vko} + 0.4 \cdot \sigma_d) + b \cdot h \cdot f_{vko}) / (2.5 \cdot 1000) \quad [kN] \\ {}^{*} \ \text{esta equação \'e aplic\'avel se as juntas verticais estiverem preenchidas} \end{array}$

Separação de um tijolo (corte):

 $V_{Rd,pb} = 2 \cdot I \cdot b \cdot (0.5 \cdot f_{vko} + 0.4 \cdot \sigma_d)/(2.5 \cdot 1000)$ [kN]

 σ_d = tensão de compressão de cálculo perpendicular ao corte (N/mm²)

 f_{vko} = resistência ao corte inicial de acordo com EN 1996-1-1, Tabela 3.4

Tipo de tijolo	Resistência do químico	f _{vko} [N/mm²]
Tijolo de barro	M2,5 a M9	0,20
rijolo do barro	M10 a M20	0,30
Todos os outros	M2,5 a M9	0,15
tipos	M10 a M20	0,20

Ensaio no local

Para outros tijolos em alvenaria maciça ou oca não abrangidos pelo Hilti HIT-HY 170 ETA nem por este manual de dados técnicos, a resistência caraterística pode ser determinada através de testes de tensão no local (testes de extração ou testes de carga), de acordo com ETAG029, Anexo B.

Para a avaliação dos resultados dos testes, a resistência caraterística deverá ser obtida tendo em conta o fator β , que considera as diferentes influências do produto.

O fator β para os tipos de tijolo abrangidos pelo Hilti HIT-HY 170 ETA é indicado na tabela seguinte:

Categorias de utilização		w/w	w/w e w/d		d/d	
Intervalo de temperatura	Ta*	Tb*	Ta*	Tb*		
Material base	Elementos					
	HIT-V or HIT-IC					
Tijolo de barro maciço	HIT-V + HIT-SC	0,97	0,83	0,97	0,83	
	HIT-IC + HIT-SC					
Tijolo de silicato de cálcio maciço	HIT-V or HIT-IC	0,96	0,84	0,97	0,84	
	HIT-V + HIT-SC	0,69	0,62	0,91	0,82	
	HIT-IC + HIT-SC	0,09	0,02	0,91	0,02	
Tijolo de barro oco	HIT-V + HIT-SC	0,97	0,83	0,97	0,83	
Tijolo de barro oco	HIT-IC + HIT-SC	0,97	0,00	0,91	0,03	
Tijolo de silicato de cálcio oco	HIT-V + HIT-SC	0,69	0,62	0,91	0,82	
Tijolo de silicato de calcio oco	HIT-IC + HIT-SC	0,09	0,02	0,91	0,02	
Tijolo de betão leve oco	HIT-V + HIT-SC	0,89	0,81	0,97	0,86	
Tijolo de betao leve oco	HIT-IC + HIT-SC	0,09	0,61	0,91	0,00	
Tijolo de betão de peso normal oco	HIT-V + HIT-SC	0,97	0,80	0,97	0,80	
Tijolo de betao de peso normal oco	HIT-IC + HIT-SC	0,97	0,00	0,91	0,60	

^{*}Parâmetros de ancoragem Ta/Tb, w/w e d/d, conforme definidos nas Tabelas das páginas 8-9

Ao aplicar o fator β a partir da tabela acima, é possível obter a resistência à tração caraterística N_{Rk} . A resistência ao corte caraterística V_{Rk} também pode derivar diretamente de N_{Rk} . Para o procedimento detalhado, consultar ETAG 029, Anexo B.

Materiais

Qualidade do material

Varão roscado	Material
Threaded rod	Classe de resistência 5,8; A5 > 8% dúctil
HIT-V 5.8 (F)	Aço galvanizado ≥ 5μm; (F) galvanizado a quente ≥ 45 μm
Threaded rod	Classe de resistência 8,8; A5 > 8% dúctil
HIT-V 8.8 (F)	Aço galvanizado ≥ 5μm; (F) galvanizado a quente ≥ 45 μm
Threaded rod	Classe de resistência 70 para ≤ M24 e classe 50 para > M24, A5 > 8%
HIT-V-R	dúctil
	Aço inoxidável 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362
Threaded rod	A5 > 8% dúctil
HIT-V-HCR	Aço de grande resistência à corrosão 1.4528, 1.4565
Manga com rosca interna HIT-IC	A5 > 8% dúctil
Ivianga com rosca interna min-ic	Aço galvanizado ≥ 5μm
	Aço galvanizado
Anilha	Aço inoxidável 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362
	Aço de grande resistência à corrosão 1.4529, 1.4565 EN 10088
	Aço galvanizado
	de classe de resistência $8 \ge 5 \mu m$
	Galvanizado a quente ≥ 45 μm
Porca sextavada	Classe de resistência 70
1 orda coxtavada	Aço inoxidável de grau A4 1.4401;1.4404;1.4578;1.4571;1.4439;
	1.4362
	Aço de grande resistência à corrosão de resistência de classe 70, 1.4529; 1.4565
	A5 > 8% dúctil
Manga com rosca interna HIT-IC	Aço galvanizado ≥ 5 μm
Coming portureds LHT CC	Estrutura: Polyfort FPP 20T
Camisa perfurada HIT-SC	Perfurada: PA6.6 N500/200

Materiais base:

- alvenaria de tijolo maciço. As resistências caraterísticas também são válidas para tamanhos de tijolos maiores e para resistências de compressão maiores da unidade de alvenaria.
- Alvenaria de tijolo oco
- Classe de resistência do químico da alvenaria: M2,5 ao mínimo, de acordo com a EN 998-2: 2010.
- Para outros tijolos de alvenaria maciça e na alvenaria oca ou perfurada, a resistência caraterística da ancoragem pode ser determinada por testes no local de acordo com a ETAG 029, Anexo B, em consideração do fator-β segundo a Tabela da página 9.

Informações de instalação

Intervalo de temperatura de instalação:

-5 °C a +40 °C

Intervalo de temperatura de serviço

O químico de injeção Hilti HIT-HY 170 pode ser aplicado dentro dos intervalos de temperatura abaixo indicados. Uma temperatura elevada do material base pode levar a uma redução da resistência de cálculo de aderência.

Intervalo de temperatura	Temperatura do material base	Temperatura máx. do material base a longo prazo	Temperatura máx. do material base a curto prazo
Intervalo de temperatura I	-40 °C a +40 °C	+ 24 °C	+ 40 °C
Intervalo de temperatura	-40 °C a 80 °C	+ 50 °C	+ 80 °C

Temperatura máx. do material base a curto prazo

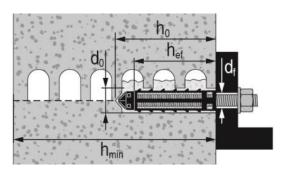
As elevadas temperaturas do material base a curto prazo são as que ocorrem durante breves intervalos, por exemplo, como resultado de ciclos diurnos.

Temperatura máx. do material base a longo prazo

As elevadas temperaturas do material base a longo prazo são relativamente constantes durante períodos de tempo significativos.

Tempo de trabalhabilidade e tempo de cura

Temperatura do material base	Tempo máximo de trabalho t _{work}	Tempo mínimo de cura t _{cure}
-5 °C ≤ T _{BM} ≤ 0 °C ^{a)}	10 min.	12 h
0 °C ≤ T _{BM} ≤ 5 °C ^{a)}	10 min.	5 h
5 °C ≤ T _{BM} ≤ 10 °C	8 min.	2,5 h
10 °C ≤ T _{BM} ≤ 20 °C	5 min.	1,5 h
20 °C ≤ T _{BM} ≤ 30 °C	3 min.	45 min.
30 °C ≤ T _{BM} ≤ 40 °C	2 min.	30 min.


Os valores do tempo de cura são válidos apenas para o material base seco. Para o material base húmido, os tempos de cura têm de ser duplicados.

a) Valores válidos apenas para tijolo oco

Parâmetros de instalação

Camisa perfurada única, 50 mm > h_{ef} > 80 mm

Parâmetros de instalação de HIT-V com a camisa perfurada HIT-SC em tijolo maciço e oco


Varões roscados e HIT-V	<u>annunun</u>	m[]m	M8	M10	M12
com HIT-SC	€	===	16>	c 85	18x85
Diâmetro nominal da broca	d ₀ [[mm]	16	16	18
Profundidade do furo	h ₀ [[mm]	95	95	95
Profundidade de embebimento efetiva	h _{ef} [[mm]	80	80	80
Diâmetro máximo do furo na chapa	d _f [[mm]	9	12	14
Espessura mínima da parede	h _{min} [[mm]	115	115	115
Escova HIT-RB			16	16	18
Número de gatilhadas HDM			6	6	8
Número de gatilhadas HDE 500-A			5	5	6
Torque de aperto máximo para todos os tipos de tijolo, exceto "parpaing creux"	T _{max} [[Nm]	3	4	6
Torque de aperto máximo para "parpaing creux"	T _{max} [[Nm]	2	2	3

Parâmetros de instalação de HIT-IC com HIT-SC em tijolo maciço e oco

HIT-IC			M8	M10	M12
com HIT-SC	₩		16x85	18x85	22x85
Diâmetro nominal da broca	d_0	[mm]	16	18	22
Profundidade do furo	h ₀	[mm]	95	95	95
Profundidade de embebimento efetiva	h _{ef}	[mm]	80	80	80
Comprimento do encaixe da rosca	hs	[mm]	8 75	10 75	12 75
Diâmetro máximo do furo na chapa	d _f	[mm]	9	12	14
Espessura mínima da parede	h _{min}	[mm]	115	115	115
Escova HIT-RB			16	18	22
Número de gatilhadas HDM			6	8	10
Número de gatilhadas HDE - 500			5	6	8
Torque de aperto máximo	T _{max}	[Nm]	3	4	6

Tijolo maciço sem camisas perfuradas a)

Parâmetros de instalação de HIT-V em tijolo maciço

Varões roscados e HIT-V	mummum	a [] a	M8	M10	M12
Diâmetro nominal da broca	d ₀	[mm]	10	12	14
Profundidade do furo = Profundidade de embebimento efetiva	h ₀ = h _{ef}	[mm]	50 300	50 300	50 300
Diâmetro máximo do furo na chapa	df	[mm]	9	12	14
Espessura mínima da parede	h _{min}	[mm]	h ₀ +30	h ₀ +30	h ₀ +30
Escova HIT-RB			10	12	14
Torque de aperto máximo	T _{max}	[Nm]	5	8	10

A Hilti recomenda que a ancoragem em alvenaria seja sempre realizada com camisa perfurada. As fixações apenas podem ser instaladas sem camisas perfuradas em tijolo maciço quando se garanta que este não tem qualquer furo nem espaço oco.

Parâmetros de instalação de HIT-IC em tijolo maciço

HIT-IC			M8x80	M10x80	M12x80
Diâmetro nominal da broca	d ₀	[mm]	14	16	18
Profundidade do furo = Profundidade de embebimento efetiva	h ₀ = h _{ef}	[mm]	80	80	80
Comprimento a aparafusar; min – max	hs	[mm]	8 75	10 75	12 75
Diâmetro máximo do furo na chapa	d _f	[mm]	9	12	14
Espessura mínima da parede	h _{min}	[mm]	115	115	115
Escova HIT-RB			14	16	18
Torque de aperto máximo	T _{max}	[Nm]	5	8	10

A Hilti recomenda que a ancoragem em alvenaria seja sempre realizada com camisa perfurada. As fixações apenas podem ser instaladas sem camisas perfuradas em tijolo maciço quando se garanta que este não tem qualquer furo nem espaço oco.

Equipamento de instalação

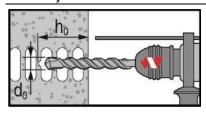
Equipamento de mistalação								
Diâmetro da ancoragem	M8	M10	M12					
Martelo perfurador	TE2(A) – TE30(A)							
Outro equipamento	•	orimido ou bomba de lim vas de limpeza, dispens	•					

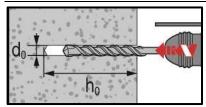
Parâmetros de perfuração e limpeza

HIT-V ^{a)}	HIT-V + camisa perfurada	HIT-IC a)	HIT-IC + camisa perfurada	Martelo perfurador d₀ [mm]	Escova HIT-RB dimensõ	Êmbolo HIT-SZ es [mm]	
mananan []m			€				
M8	-	-	-	10	10	-	
M10	-	-	-	12	12	12	
M12	-	M8	-	14	14	14	
-	M8	-	-	16	16	16	
-	M10	M10	M8	16	16	16	
-	M12	M12	M10	18	18	18	
-	-	-	M12	22	22	22	

a) A instalação sem a camisa perfurada HIT-SC pode ser utilizada apenas com tijolo maciço.

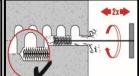
Instruções de instalação

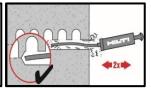

*Consultar as instruções de utilização na caixa do produto para obter informações detalhadas sobre a instalação.


Regulamentos de segurança

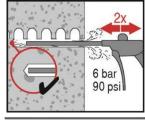
Consultar a Ficha de dados de segurança antes de aplicar o produto para garantir um manuseamento adequado e seguro. Deve usar óculos e luvas de proteção adequados quando trabalhar com o Hilti HIT-HY 170.

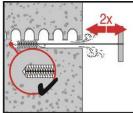
Perfuração

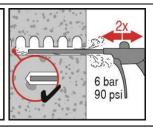

Em tijolo oco: modo de rotação, sem percussão



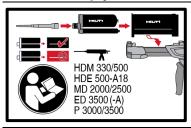
Em tijolo maciço: modo de percussão

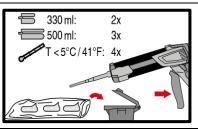

Limpeza



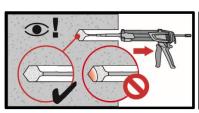


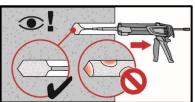
Limpeza manual



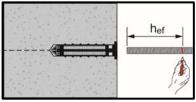


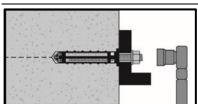
Limpeza a ar comprimido


Instruções para tijolo maciço sem camisa perfurada

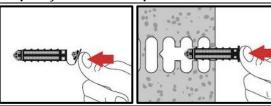

Sistema de injeção

Preparação do sistema de injeção

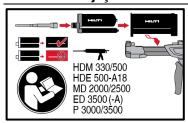


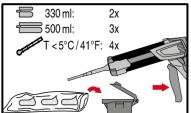

Sequência de **injeção** para furo perfurado

Instalação do elemento

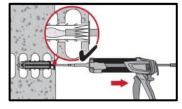

Ao pré-instalar o elemento, respeitar o tempo de atuação "twork".

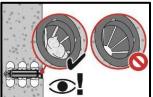
Carga sobre a ancoragem: após o tempo de cura t_{cure} necessário, é possível colocar carga sobre a ancoragem.


Instruções para tijolo oco e maciço com camisa perfurada

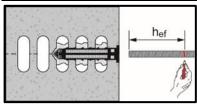

Preparação da camisa perfurada

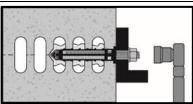
Fechar a tampa e inserir a camisa perfurada manualmente


Sistema de injeção



Preparação da sequência de injeção.


Sistema de injeção: tijolo oco



Instalação com camisa perfurada HIT-SC

Instalação do elemento

Ao pré-instalar o elemento, respeitar o tempo de atuação "twork".

Carga sobre a ancoragem: após o tempo de cura t_{cure} necessário, é possível colocar carga sobre a ancoragem.

Químico de injeção HIT-HY 170

Dimensionamento (ou cálculo) de ancoragem (EN 1992-4) / Varões nervurados / Betão

Sistema de químico de injeção

Hilti HIT-HY 170

Cartucho de 500 ml (também disponível em cartucho de 330 ml) Adequado para betão não fissurado e fissurado C 12/15 a C 50/60

Vantagens

- Adequado para betão seco e saturado de água
- Grande capacidade de carga e cura rápida
- Intervalo de temperatura de serviço de até 80 °C a curto prazo/50 °C a longo prazo
- Limpeza manual para furos com diâmetro ≤ 18 mm e profundidade de embebimento hef ≤ 10d

and respectively and state of the state of t

Varão de aço B500 B (\$8-\$25)

Material base

Betão (não fissurado)

Betão seco

Betão húmido

Condições de carga

Outras informações

Estática/ quase estática

Condições de instalação

Perfuração com percussão

Perfuração de broca oca

Profundidade de embebimento variável

Aprovações/certificados

Descrição	Autoridade/Laboratório	N.º/Data de emissão
Dados técnicos da Hilti a)	Hilti	2017-11-28

a) Todos os dados indicados nesta secção estão em conformidade com os Dados técnicos da Hilti.

Carga estática e quase estática (para uma fixação isolada)

Todos os dados nesta secção aplicam-se para

- Instalação correta
- Sem influências de distâncias ao bordo e espaçamentos entre fixações
- Rotura do Aço
- Espessura do material base conforme especificado na tabela
- Uma profundidade de embebimento típica conforme especificado na tabela
- <u>Um</u> material de ancoragem conforme especificado nas tabelas
- Betão C 20/25, f_{ck,cube} = 25 N/mm²
- Intervalo de temperatura I

(temperatura mín. do material base: -40 °C; temperatura máx. do material base a longo/curto prazo: +50 °C/80 °C)

Profundidade de embebimento ^{a)} e espessura do material base para valores de carga estática e quase estática

Diâmetro do varão		ф8	φ10	φ12	φ14	φ16	φ18	ф20	ф22	φ24	ф25
Profundidade de embebimento típica	[mm]	80	90	110	125	145	155	170	185	200	210
Espessura do material base	[mm]	110	120	140	161	185	199	220	237	256	274

a) A gama de profundidade de embebimento permitida é apresentada nos detalhes de instalação. Os valores de carga correspondentes podem ser calculados de acordo com o método de cálculo simplificado.

Resistência caraterística

Diâmetro do varão	ф8	φ10	φ12	φ14	φ16	φ18	φ20	ф22	φ24	φ25
Tração N _{Rk} [kN]	20,1	28,3	41,5	58,9	72,9	87,7	106,8	127,1	142,8	153,7
Corte V _{Rk}	14,0	22,0	31,0	42,0	55,0	70,0	86,0	104,0	124,0	135,0

Resistência de cálculo

Diâmetro do varão	ф8	φ10	φ12	φ14	φ16	φ18	ф20	φ22	φ24	φ25
Tração N _{Rd} [kl	13,4	18,8	27,6	39,3	48,6	58,4	71,2	84,7	95,2	102,5
Corte V _{Rd}	11,2	17,6	24,8	33,6	44,0	56,0	68,8	83,2	99,2	108,0

Cargas recomendadasa)

Diâmetro do varão	ф8	φ10	φ12	φ14	φ16	φ18	φ20	ф22	φ24	ф25
Tração N _{Rec} [kN]	9,6	13,5	19,7	28,0	34,7	41,7	50,9	60,5	68,0	73,2
Corte V _{Rec}	8,0	12,6	17,7	24,0	31,4	40,0	49,1	59,4	70,9	77,1

a) Coeficiente de segurança parcial para ações γ =1,4. O coeficiente de segurança parcial para ações depende do tipo de carga e deve ser retirado dos regulamentos nacionais.

Materiais

Propriedades mecânicas

1 repriedades installed											
Diâmetro da ancorage	m	φ8	φ10	φ12	φ14	φ16	φ18	φ20	φ22	φ24	φ25
Resistência à tração nominal fuk	[N/mm²]	550	550	550	550	550	550	550	550	550	550
Limite elástico f _{yk}	[N/mm²]	500	500	500	500	500	500	500	500	500	500
Área da secção ao corte As	[mm²]	50,3	78,5	113,1	153,9	201,1	254,0	314,2	380	452	490,9
Momento resistente W	[mm³]	50,3	98,2	169,6	269,4	402,1	572,6	785,4	1045,3	1357,2	1534

Qualidade do material

Varão	Material
Varão de aço	Barras e varões sem rosca de classe B ou C com fyk e k de acordo com a NDP
EN 1992-1-1	ou NCL da EN 1992-1-1 $f_{uk} = f_{tk} = k \cdot f_{yk}$

Informações de instalação

Temperatura de instalação

-5 °C a +40 °C

Intervalo de temperatura de serviço

O químico de injeção Hilti HIT-HY 170 pode ser aplicado dentro dos intervalos de temperatura abaixo indicados. Uma temperatura elevada do material base pode levar a uma redução da resistência de cálculo de aderência.

Intervalo de temperatura	Temperatura do material base	Temperatura máx. do material base a longo prazo	Temperatura máx. do material base a curto prazo
Intervalo de temperatura I	- 40 °C a + 40 °C	+ 24 °C	+ 40 °C
Intervalo de temperatura II	- 40 °C a + 80 °C	+ 50 °C	+ 80 °C

Temperatura máx. do material base a curto prazo

As elevadas temperaturas do material base a curto prazo são as que ocorrem durante breves intervalos, por exemplo, como resultado de ciclos diurnos.

Temperatura máx. do material base a longo prazo

As elevadas temperaturas do material base a longo prazo são relativamente constantes durante períodos de tempo significativos.

Tempo de trabalhabilidade e tempo de cura

Temperatura do material base	Tempo de trabalho máx. em que o varão de aço pode ser inserido e ajustado t _{work}	Tempo de cura mín. até que o varão de aço possa ser totalmente carregado t _{cure}
-5 °C ≤ T _{BM} ≤ 0 °C ^{a)}	10 min.	12 h
$0 \text{ °C} \leq T_{BM} \leq 5 \text{ °C }^{a)}$	10 min.	5 h
5 °C ≤ T _{BM} ≤ 10 °C	8 min.	2,5 h
10 °C ≤ T _{BM} ≤ 20 °C	5 min.	1,5 h
20 °C ≤ T _{BM} ≤ 30 °C	3 min.	45 min.
30 °C ≤ T _{BM} ≤ 40 °C	2 min.	30 min.

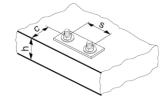
Os valores do tempo de cura são válidos apenas para o material base seco. Para o material base húmido, os tempos de cura têm de ser duplicados.

Equipamento de instalação

Varão de aço – Diâmetro	Ø8	Ø10	Ø12	Ø14	Ø16	Ø18	Ø20	Ø22	Ø24	Ø25		
Martelo perfurador	TE2(-A) – TE30(-A)						TE40 – TE80					
Outro equipamento	Bomba de limpeza ou pistola de ar comprimido ^{a)} Conjunto de escovas de limpeza ^{b)} , dispensador, êmbolo											

a) Pistola de ar comprimido com mangueira de extensão para todos os furos mais profundos do que 250 mm (para φ 8 a φ 12) ou mais profundos do que 20 φ (para φ > 12 mm)

b) Escovagem automática com escova redonda para todos os furos mais profundos do que 250 mm (para φ 8 a φ 12) ou mais profundos do que 20.φ (para φ > 12 mm)



Detalhes de instalação

Diâmetro da ancorager	Diâmetro da ancoragem		Ø8	Ø10	Ø	12	Ø14	Ø16	Ø18	Ø20	Ø22	Ø24	Ø25
Diâmetro nominal da broca	d ₀	[mm]	10/ 12 ^{a)}	12/ 14 ^{a)}	14 ^{a)}	16 ^{a)}	18	20	22	25	26	28	32
Profundidade efetiva do	h _{ef,min}	[mm]	60	60	70	70	75	80	85	90	95	100	100
furo e de ancoragem b)	h _{ef,max}	[mm]	96	120	144	144	168	192	216	240	264	288	300
Espessura mínima do material base	h_{min}	[mm]		+ 30 m 100 mn					h _{ef} +	2 d ₀			
Espaçamento mínimo	S _{min}	[mm]	40	50	60	60	70	80	90	100	110	120	125
Distância mínima ao	Cmin	[mm]	40	50	60	60	70	80	90	100	110	120	125
Espaçamento crítico para rotura por fendilhação	Scr,sp	[mm]						2 C _{cr,sp}					
Distância crítica ao			1,	$0 \cdot h_{\text{ef}}$		por l	n/h _{ef} ≥ 2	2,0	h/h _e				
bordo para rotura por	$\mathbf{C}_{\text{cr,sp}}$	[mm]	4,6 h	_{ef} - 1,8	h p	oor 2,0	> h/h _{ef}	> 1,3	1,3	-			
fendilhação ^{c)}			2,2	26 h _{ef}		por l	n/h _{ef} ≤	1,3			1,0·h _{ef}	2,26·h _{ef}	C _{cr,sp}
Espaçamento crítico para rotura por cone de betão	S _{cr,N}	[mm]						2 C _{cr,N}					
Distância crítica ao bordo para rotura por cone de betão ^{d)}	Ccr,N	[mm]						1,5 h _{ef}					

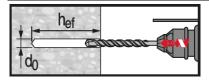
As resistências de cálculo devem ser reduzidas para espaçamentos (distância ao bordo) menores do que o espaçamento crítico (distância ao bordo crítica).

- a) Ámbos os valores indicados para o diâmetro da broca podem ser utilizados
- b) $h_{ef,min} \le h_{ef} \le h_{ef,max}$ (h_{ef} : profundidade de embebimento)
- c) h: espessura do material base ($h \ge h_{min}$)
- A distância crítica ao bordo para rotura por cone de betão depende da profundidade de embebimento hef e da resistência de cálculo de aderência. A fórmula simplificada indicada nesta tabela é conservadora.

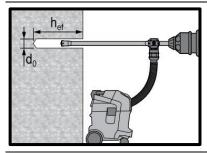
Parâmetros de perfuração e limpeza

Varão de aço	Diâmetros de b	rocas d ₀ [mm]	Tamanho de instalação [mm]			
varao de aço	Martelo perfurador	Perfuração com Broca Oca	Escova HIT-RB	Êmbolo HIT-SZ		
V/7/2/2/2/2/2			41111111111111111111111111111111111111	C. C		
ф8	10/12 a)	-	10/12 a)	-/12		
φ10	12/14 a)	14	12/14 ^{a)}	12/14 a)		
φ12	14/16 a)	16 (14 a))	14/16 a)	14/16 a)		
φ14	18	18	18	18		
φ16	20	20	20	20		
φ18	22	22	22	22		
φ20	25	25	25	25		
ф22	28	28	28	28		
φ24	32	32	32	32		
φ25	32	32	32	32		

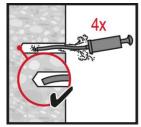
a) Cada um dos dois valores indicados pode ser utilizado

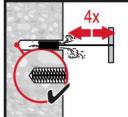

Instruções de instalação

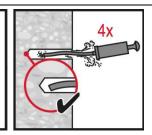
*Consultar as instruções de utilização na caixa do produto para obter informações detalhadas sobre a instalação.


Regulamentos de segurança.

Consultar a Ficha de dados de segurança antes de aplicar o produto para garantir um manuseamento adequado e seguro. Deve usar óculos e luvas de proteção adequados quando trabalhar com o Hilti HIT-HY 170.

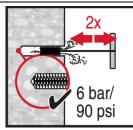

Furo perfurado por martelo (com percussão)

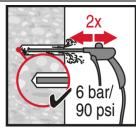

Para betão seco e húmido.



Furo perfurado por martelo com broca oca (HDB)

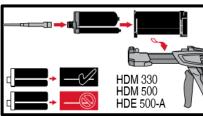
Não necessita de limpeza.

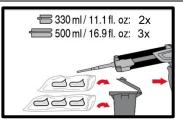


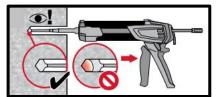


Limpeza manual (MC)

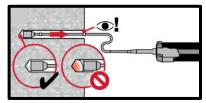
para perfurações de diâmetros $d_0 \le 20$ mm e furos com profundidade $h_0 \le 10$ ·d.

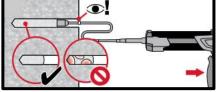





Limpeza a ar comprimido (CAC)

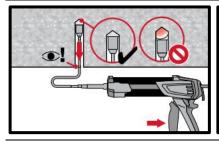

para perfurações de todos os diâmetros d_0 e todas as profundidades de furos $h_0 \le 20 \cdot d$.

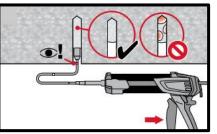

Preparação do sistema de injeção.



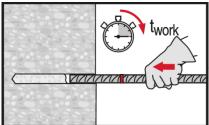
Método de **injeção** para profundidade do furo

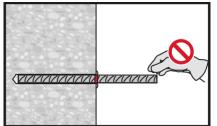
 $h_{ef} \le 250 \text{ mm}.$

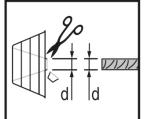


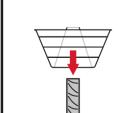


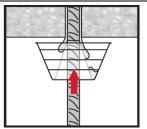
Método de **injeção** para profundidade do furo

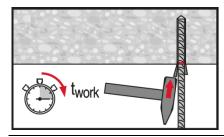

 $h_{\text{ef}} > 250 \text{ mm}.$

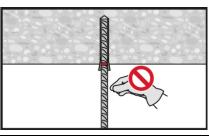





Método de **injeção** para aplicações acima do nível da cabeça.




Ao instalar o elemento, respeitar o tempo de atuação "t_{work}".



Ao instalar o elemento em aplicações acima do nível da cabeça, respeitar o tempo de atuação "t_{work}".

Carga sobre a ancoragem: após o tempo de cura t_{cure} necessário, é possível colocar carga sobre a ancoragem.

Químico de injeção HIT-HY 170

Dimensionamento (ou cálculo) de varão de aço (EN 1992-1)/Elementos para varão de aço/Betão

Sistema de químico de injeção

Hilti HIT-HY 170 Cartucho de 330 ml

(também disponível em cartucho de 500 ml)

Varão de aço B500 B (\phi8 - \phi25)

Vantagens

- Adequado para betão C12/15 a C50/60
- Adequado para betão seco e saturado de água
- Grande capacidade de carga e cura rápida
- Grande resistência à corrosão
- Para varões de aço com diâmetro até 25 mm
- Limpeza manual para furos com diâmetro \leq 20 mm e profundidade de embebimento $h_{ef} \leq$ 10d
- Adequado para profundidade de embebimento de até 1000 mm, consoante o diâmetro do varão de aço

THE PROPERTY OF THE PARTY OF TH

Material base

Betão (não fissurado)

Betão seco

Betão saturado de água

Condições de carga

Estática/quase estática

Resistência ao fogo

Condições de instalação

Furos perfurados por martelo

Perfuração com broca oca

Outras informações

Avaliação Técnica Europeia

Marcação CE

Aprovações/certificados

Descrição	Autoridade/Laboratório	N.º/Data de emissão		
Avaliação Técnica Europeia a)	DIBt, Berlin	ETA-15/0297 / 2015-12-11		

b) Todos os dados técnicos apresentados nesta secção estão de acordo com a ETA-15/0297, edição de 11/12/2015.

Carga estática e quase estática

Resistência de cálculo por aderência

Resistência de cálculo de aderência em N/mm² conforme a ETA-15/0297 relativa a boas condições de aderência

Todos os modo	Todos os modos de perfuração permitidos										
Varão de aço		Classe do betão									
- tamanho	C12/15	C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60									
φ8 - φ12	1,6	2,0	2,3	2,7	3,0	3,4	3,7	3,7	3,7		
φ14 - φ25	1,6	2,0	2,3	2,7	3,0	3,4	3,4	3,4	3,4		

Para todas as outras condições de aderência, multiplique os valores por 0,7.

Comprimento de ancoragem mínimo e comprimento de dobra mínimo

O comprimento de ancoragem mínimo $\ell_{b,min}$ e o comprimento de dobra mínimo $\ell_{0,min}$ conforme a EN 1992-1-1 deverá ser multiplicado pelo **Fator de amplificação** α_{lb} relevante na tabela seguinte.

Fator de amplificação α_{lb} para o comprimento de ancoragem mín. e comprimento de dobra mín. conforme a EN 1992-1-1 para:

Todos os modos de	Todos os modos de perfuração permitidos										
Varão de aço – Classe do betão											
tamanho	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
φ8 - φ25	1,0										

Valores pré-calculados

Valores pré-calculados¹⁾ – comprimento de ancoragem

Limite elástico do varão de aço f_{vk}=500 N/mm², betão C25/30, boas condições de aderência

Limite elastic	o do varao de aço f _{yk} =5			Uas 	Comprimento		
Varão de aço	Comprimento de ancoragem	Valor do cálculo	Volume do químico ²⁾		de ancoragem	Valor do cálculo	Volume do químico ²⁾
[mm]	I _{bd} [mm]	N _{Rd} [kN]	V _M [ml]		I _{bd} [mm]	N _{Rd} [kN]	V _M [ml]
	$\alpha_1 = \alpha_2 = 0$	$\alpha_3=\alpha_4=\alpha_5=1,0$			$\alpha_1 = \alpha_3 = \alpha_4$	$a = 1,0$ α_2 or α_2	₅ = 0,7
	100	6,8	8		100	9,7	8
10	170	11,5	13		140	13,6	11
ф8	250	17,0	19		180	17,4	14
	322	21,9	24		226	21,9	17
	121	10,3	11		121	14,7	11
140	220	18,7	20	-	170	20,6	15
φ10	310	26,3	28		230	27,9	21
	403	34,2	36		281	34,1	25
	145	14,8	15		145	21,1	15
140	260	26,5	27		210	30,5	22
φ12	370	37,7	39		270	39,3	29
	483	49,2	51		338	49,1	36
	169	20,1	20		169	28,7	20
111	300	35,6	36	-	240	40,7	29
φ14	430	51,1	52		320	54,3	39
	564	67,0	68		394	66,8	48
	193	26,2	26		193	37,4	26
140	340	46,1	46		280	54,3	38
φ16	490	66,5	67		370	71,7	50
	644	87,4	87		451	87,4	61
	217	33,1	33		217	47,3	33
140	380	58,0	57		310	67,6	47
φ18	540	82,4	81		410	89,4	62
	700	106,9	106		507	110,6	76
	242	41,1	51		242	58,6	51
130	390	66,2	83		350	84,8	74
φ20	550	93,3	117		460	111,5	98
	700	118,8	148		564	136,7	120

Valores pré-calculados¹⁾ – comprimento de ancoragem

Limite elástico do varão de aço f_{yk}=500 N/mm², betão C25/30, boas condições de aderência

Varão de aço	Comprimento de ancoragem	Valor do cálculo	Volume do químico ²⁾	Comprimento de ancoragem	Valor do cálculo	Volume do químico ²⁾
[mm]	I _{bd} [mm]	N _{Rd} [kN]	V _M [ml]	I _{bd} [mm]	N _{Rd} [kN]	V _M [ml]
	$\alpha_1 = \alpha_2 = 0$	$\alpha_3=\alpha_4=\alpha_5=1,0$		$\alpha_1 = \alpha_3 = \alpha$	$a_4 = 1,0 \alpha_2 \text{ or } \alpha_3$	5= 0,7
	266	49,6	75	266	70,9	75
100	410	76,5	116	380	101,3	107
φ22	560	104,5	158	500	133,3	141
	700	130,6	198	620	165,3	175
	290	59,0	122	290	84,3	122
104	430	87,5	182	420	122,1	177
φ24	560	114,0	236	550	160,0	232
	700	142,5	296	676	196,6	285
	302	64,0	114	302	91,5	114
ф25	430	91,2	162	430	130,3	162
	570	120,9	214	570	172,7	214
	700	148,4	263	700	212,1	263

Valores correspondentes ao comprimento de ancoragem mínimo. A carga máxima permitida é válida para "boas condições de aderência" conforme descrito em EN 1992-1-1. Para todas as outras condições, multiplique o valor por 0,7.

Valores pré-calculados¹⁾ – comprimento de sobreposição

Limite elástico do varão de aço fyk=500 N/mm², betão C25/30, boas condições de aderência

Varão de aço	Comprimento de sobreposição	Valor do cálculo	Volume do químico ²⁾	Comprimento de sobreposição	Valor do cálculo	Volume do químico ²⁾
[mm]	I₀ [mm]	N _{Rd} [kN]	V _M [ml]	l₀ [mm] ์	N _{Rd} [kN]	V _M [ml]
	$\alpha_1=\alpha_2=0$	$\alpha_3=\alpha_4=\alpha_5=1,0$		$\alpha_1 = \alpha_3 = \alpha_4$	$\alpha = 1,0$ α_2 or α_2	a ₅ = 0 ,7
	200	13,6	15	200	19,4	15
10	240	16,3	18	210	20,4	16
ф8	280	19,0	21	220	21,3	17
	322	21,9	24	226	21,9	17
	200	17,0	18	200	24,2	18
140	270	22,9	24	230	27,9	21
ф10	340	28,8	31	250	30,3	23
	403	34,2	36	281	34,1	25
	200	20,4	21	200	29,1	21
140	290	29,5	31	250	36,4	26
ф12	390	39,7	41	290	42,2	31
	483	49,2	51	338	49,1	36
	210	24,9	25	210	35,6	25
144	330	39,2	40	270	45,8	33
ф14	450	53,4	54	330	56,0	40
	564	67,0	68	394	66,8	48
	240	32,6	33	240	46,5	33
146	370	50,2	50	310	60,1	42
ф16	510	69,2	69	380	73,7	52
	644	87,4	87	451	87,4	61
	270	41,2	41	270	58,9	41
140	410	62,6	62	350	76,3	53
ф18	560	85,5	84	430	93,8	65
	700	106,9	106	507	110,6	76
	300	50,9	64	300	72,7	64
100	430	72,9	91	390	94,5	83
ф20	570	96,7	121	480	116,3	102
	700	118,8	148	564	136,7	120
	330	61,6	93	330	88,0	93
100	450	84,0	127	430	114,6	122
ф22	580	108,2	164	520	138,6	147
	700	130,6	198	620	165,3	175
	360	73,3	152	360	104,7	152

²⁾ O volume do químico corresponde à fórmula "1,2*(d₀²-d_s²)*π*lb/4" para perfuração com percussão

Valores pré-calculados¹⁾ – comprimento de sobreposição

Limite elástico do varão de aço fyk=500 N/mm², betão C25/30, boas condições de aderência

Varão de aço [mm]	Comprimento de sobreposição l₀ [mm]	Valor do cálculo N _{Rd} [kN]	Volume do químico ²⁾ V _M [ml]	Comprimento de sobreposição l ₀ [mm]	Valor do cálculo N _{Rd} [kN]	Volume do químico ²⁾ V _M [ml]
	$\alpha_1 = \alpha_2 = 0$	$\alpha_3=\alpha_4=\alpha_5=1,0$		$\alpha_1 = \alpha_3 = \alpha_4$	$\alpha_1 = 1,0$ α_2 or α_3	₅ = 0,7
	470	95,7	198	470	136,7	198
φ24	590	120,1	249	570	165,8	241
	700	142,5	296	676	196,6	285
	375	79,5	141	375	113,6	141
125	480	101,8	181	480	145,4	181
φ25	590	125,1	222	590	178,7	222
	700	148,4	263	700	212,1	263

Valores correspondentes ao comprimento de ancoragem mínimo. A carga máxima permitida é válida para "boas condições de aderência" conforme descrito em EN 1992-1-1. Para todas as outras condições, multiplique o valor por 0,7.

Materiais

Qualidade do material

Varão	Material
Varão de aço EN 1992-1-1	Barras e varões sem rosca de classe B ou C com f_{yk} e k de acordo com a NDP ou NCL da EN 1992-1-1 $f_{uk} = f_{tk} = k \cdot f_{yk}$

Adequação para utilização

Foram realizados alguns testes de fluência conforme a diretriz ETAG 001, parte 5 e a TR 023 nas condições seguintes: num ambiente seco a 50 °C durante 90 dias.

Estes testes demonstraram um comportamento excelente da ligação após a instalação realizada com o HIT-HY 170: deslocações reduzidas com estabilidade a longo prazo, carga de rotura após exposição acima da carga de referência.

Resistência a substâncias químicas

Substância química	Comentário	Resistência
Ácido sulfúrico	23 °C	+
Meio alcalino	pH = 13,2, 23 °C	+

Intervalo de temperatura de instalação

-5 °C a +40 °C

Intervalo de temperatura de serviço

O químico de injeção Hilti HIT-HY 170 pode ser aplicado dentro dos intervalos de temperatura abaixo indicados. Uma temperatura elevada do material base pode levar a uma redução da resistência de cálculo de aderência.

Intervalo de temperatura	Temperatura do material base	Temperatura máxima do material base a longo prazo	Temperatura máxima do material base a curto prazo
Intervalo de temperatura I	-40 °C a +80 °C	+50 °C	+80 °C

Temperatura máx. do material base a curto prazo

As elevadas temperaturas do material base a curto prazo são as que ocorrem durante breves intervalos, por exemplo, como resultado de ciclos diurnos.

Temperatura máx. do material base a longo prazo

As elevadas temperaturas do material base a longo prazo são relativamente constantes durante períodos de tempo significativos.

²⁾ O volume do químico corresponde à fórmula "1,2*(d₀²-d_s²)*π*lb/4" para perfuração com percussão

Tempo de trabalhabilidade e tempo de cura

Temperatura	Tempo de trabalho máximo	Tempo mínimo de cura
do material base T _{BM}	t _{gel}	t _{cure} 1)
$-5 \text{ °C} \leq T_{BM} \leq 0 \text{ °C a}$	10 min.	12 h
0 °C ≤ T _{BM} ≤ 5 °C ^{a)}	10 min.	5 h
5 °C ≤ T _{BM} ≤ 10 °C	8 min.	2,5 h
10 °C ≤ T _{BM} ≤ 20 °C	5 min.	1,5 h
20 °C ≤ T _{BM} ≤ 30 °C	3 min.	45 min.
30 °C ≤ T _{BM} ≤ 40 °C	2 min.	30 min.

Os valores do tempo de cura são válidos apenas para o material base seco. Para o material base húmido, os tempos de cura têm de ser duplicados.

Informações de instalação

Equipamento de instalação

Varão de aço – Diâmetro	ф8	φ10	φ12	φ14	φ16	φ18	φ20	φ22	φ24	φ25
Martelo Eletropneumático	TE2(-A) – TE30(-A)		TE40 – TE80							
	Bomba de limpeza (h _{ef} ≤ 10·d) -									
Outro equipamento	Pistola de ar comprimido ^{a)}									
	Conjunto de escovas de limpezab, dispensador, êmbolo									

- c) Pistola de ar comprimido com mangueira de extensão para todos os furos mais profundos do que 250 mm (para φ 8 a φ 12) ou mais profundos do que 20 φ (para φ > 12 mm)
- d) Escovagem automática com escova redonda para todos os furos mais profundos do que 250 mm (para φ 8 a φ 12) ou mais profundos do que 20 φ (para φ > 12 mm)

Cobertura de betão mínima c_{min} do varão de aço instalado posteriormente

Método de	Diâmetro da	Cobertura de betão mínima c _{min} [mm]			
perfuração	barra [mm]	Sem auxílio de perfuração	Com auxílio de perfuração		
Martelo	φ < 25	$30 + 0.06 \cdot I_{v} \ge 2 \cdot \phi$	$30 + 0.02 \cdot I_{v} \ge 2 \cdot \phi$	taataataataa	
perfurador (HD)	φ ≥ 25	$40 + 0.06 \cdot I_{v} \ge 2 \cdot \phi$	$40 + 0.02 \cdot I_{v} \ge 2 \cdot \phi$	(MAMAMAMA)	
Perfuração a ar	φ < 25	$50 + 0.08 \cdot I_{v}$	$50 + 0.02 \cdot I_{v}$		
comprimido (CA)	φ ≥ 25	60 + 0,08 · I _v ≥ 2 · φ	60 + 0,02 · I _v ≥ 2 · φ	, and the second second	

Parâmetros de perfuração e limpeza

Varão de aço	Martelo perfurador (HD)	Perfuração a ar comprimido (CA)	Escova HIT-RB	Bico de ar HIT-RB		
	d₀ [r	mm]	dimensões [mm]			
	TU		***************************************			
ф8	10 ^{a)}	-	10	10		
ΨΟ	12	-	12	12		
140	12 ^{a)}	-	12	12		
φ10	14	-	14	14		
	14 ^{a)}	-	14	14		
φ12	16	-	16	16		
	-	17	18	16		
14.4	18	-	18	18		
φ14	-	17	18	16		
φ16	20	20	20	20		
φ18	22	22	22	22		
130	25	-	25	25		
φ20	-	26	28	25		
ф22	28	28	28	28		
ф24	32	32	32	32		
ф25	32	32	32	32		

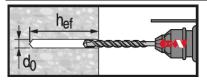
a) Comprimento de instalação máximo l=250 mm.

Parâmetros de perfuração e limpeza

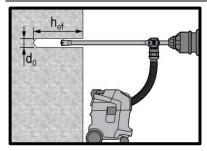
	Diâmetros de br	ocas d ₀ [mm]	Tamanho de instalação [mm]		
Varão de aço	Martelo perfurador	Broca oca	Escova HIT-RB	Êmbolo HIT-SZ	
<i>V1/1/1/1/1/2</i>		TU	40000000	: Canton	
ф8	10/12 a)	-	10/12 a)	-/12	
φ10	12/14 a)	14	12/14 a)	12/14 a)	
φ12	14/16 a)	16 (14 ^{a)})	14/16 a)	14/16 a)	
φ14	18	18	18	18	
φ16	20	20	20	20	
φ18	22	22	22	22	
φ20	25	25	25	25	
φ22	28	28	28	28	
φ24	32	32	32	32	
φ25	32	32	32	32	

Dispensadores e profundidade de embebimento máxima correspondente $\lambda_{v,max}$

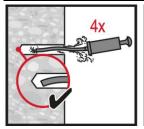
	Dispensador
Varão de aço	HDM 330, HDM 500, HDE 500
	λ _{ν,max} [mm]
ф8 а ф16	1000
ф18 а ф25	700

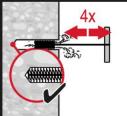

Instruções de instalação

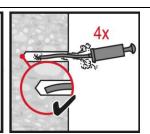
*Consultar as instruções de utilização na caixa do produto para obter informações detalhadas sobre a instalação.


Regulamentos de segurança.

Consultar a Ficha de dados de segurança antes de aplicar o produto para garantir um manuseamento adequado e seguro. Deve usar óculos e luvas de proteção adequados quando trabalhar com o Hilti HIT-HY 170.

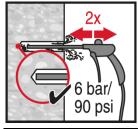

Furo perfurado por martelo (com percussão)

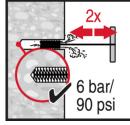

Para betão seco e húmido.

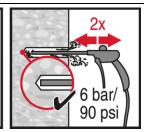


Furo perfurado por martelo com broca oca

Não necessita de limpeza.

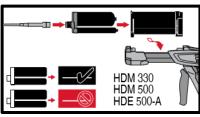


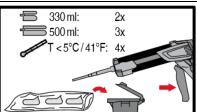


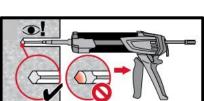


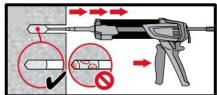
Limpeza manual

para perfurações de diâmetros d₀ ≤ 20 mm e furos com profundidade $h_0 \le 10 \cdot d$.

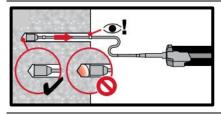


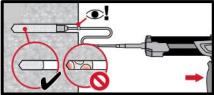



Limpeza a ar comprimido

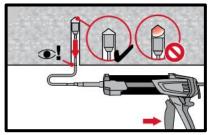

para perfurações de todos os diâmetros d₀ e todas as profundidades de furos h₀ ≤ 20·d.

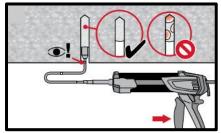
Preparação do sistema de injeção.

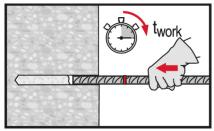


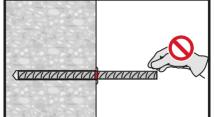

Método de injeção para profundidade do

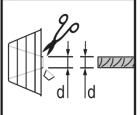
 $h_{ef} \le 250 \text{ mm}.$

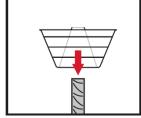


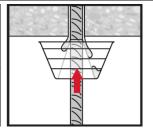


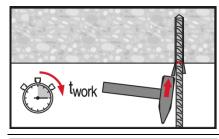

Método de **injeção** para profundidade do furo

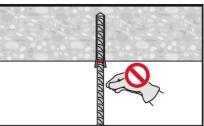

 $h_{ef} > 250 \text{ mm}.$

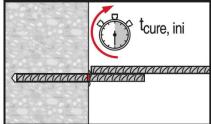


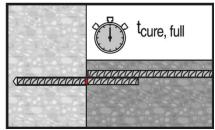

Método de **injeção** para aplicações acima do nível da cabeça.






Ao instalar o elemento, respeitar o tempo de atuação "t_{work}".





Ao instalar o elemento em aplicações acima do nível da cabeça, respeitar o tempo de atuação "t_{work}".

Aplicar carga total apenas após o tempo de cura "t_{cure}".