

Químico de injeção HIT-RE 100

Dimensionamento (ou cálculo) (ETAG 001) / varões & mangas / Betão

Sistema de químico de injeção

Hilti HIT-RE 100

Cartucho de 500 ml

(também disponível em cartuchos de 330 ml)

Varões roscados:

HIT-V HIT-V-F HIT-V-R HIT-V-HCR (M8-M30)

Varões roscados:

HAS-(E) HAS-(E)-R HAS-(E)-HCR (M8-M30)

Vantagens

- Adequado para betão fissurado e não fissurado C 20/25 a C 50/60
- Alta capacidade de carga
- Adequado para betão seco e saturado de água
- Aplicação de grande diâmetro
- Alta capacidade térmica permite trabalhar a temperaturas elevadas
- Epóxi sem odor

Material base

Betão (não fissurado)

Betão (fissurado)

Betão seco

Betão saturado de água

Estática/ quase estática

Condições de instalação

Furos executados por martelo

Profundidade de embebimento variável

Pequena dist. ao bordo e embebimento

Outras informações

Avaliação Técnica Europeia

Marcação CE

Resistência à corrosão

Grande resistência à corrosão

Aprovações/certificados

Descrição	Autoridade/ Laboratório	N.º/Data de emissão
Avaliação Técnica Europeia a)	DIBt, Berlin	ETA-15/0882 / 2017-12-11

a) Todos os dados técnicos apresentados nesta secção estão de acordo com ETA-15/0882 edição de 2017-12-11.

Resistência estática/ quase estática (para uma fixação isolada)

Todos os dados nesta secção aplicam-se para:

- Correta instalação (ver sequência de instalação)
- Sem influências de bordos e espaçamentos entre fixações
- Rotura do Aço
- Varão roscado HIT-V e HAS-(E) com classe de resistência 5.8
- Espessura do material base conforme especificado na tabela
- Uma profundidade de embebimento típica conforme especificado na tabela
- Betão C 20/25, fck,cube = 25 N/mm²
- Intervalo de temperatura I (temp. mín. material base -40 °C, temp. máx. material base a longo/curto prazo: +24 °C/40 °C)

Profundidade de embebimento a) e espessura do material base

Diâmetro de varão roscado		M8	M10	M12	M16	M20	M24	M27	M30
Profundidade de embebimento típica	[mm]	80	90	110	125	170	210	240	270
Espessura do material base	[mm]	110	120	140	165	220	270	300	340

Resistência caraterística

Diâmetro de	M8	M10	M12	M16	M20	M24	M27	M30		
Betão não fissurado										
Tração N _{Rk}	HIT-V, HAS-(E)	[kN]	18,3	29,0	42,2	70,6	111,9	153,7	187,8	224,0
Corte V _{Rk}	HIT-V, HAS-(E)	[kN]	9,2	14,5	21,1	39,3	61,3	88,3	114,8	140,3
Betão fissura	ado									
Tração N _{Rk}	HIT-V, HAS-(E)	[kN]	-	19,8	29,0	40,8	64,1	95,0	112,0	140,0
Corte V _{Rk}	HIT-V, HAS-(E)	[kN]	-	14,5	21,1	39,3	61,3	88,3	114,8	140,3

Resistência de cálculo

Diâmetro de	M8	M10	M12	M16	M20	M24	M27	M30		
Betão não fissurado										
Tração N _{Rd}	HIT-V, HAS-(E)	[kN]	12,2	19,3	27,7	33,6	53,3	73,2	89,4	106,7
Corte V _{Rd}	HIT-V, HAS-(E)	[kN]	7,3	11,6	16,9	31,4	49,0	70,6	91,8	112,2
Betão fissura	ado									
Tração N _{Rd}	HIT-V, HAS-(E)	[kN]	-	9,4	13,8	19,4	30,5	45,2	53,3	66,6
Corte V _{Rd}	HIT-V, HAS-(E)	[kN]	-	11,6	16,9	31,4	49,0	70,6	91,8	112,2

Resistência de tensão a)

Diâmetro de va	M8	M10	M12	M16	M20	M24	M27	M30		
Betão não fissurado										
Tração N _{Rec}	HIT-V, HAS-(E)	[kN]	8,7	13,8	19,8	24,0	38,1	52,3	63,9	76,2
Corte V _{Rec}	HIT-V, HAS-(E)	[kN]	5,2	8,3	12,0	22,4	35,0	50,4	65,6	80,1
Betão fissurad	olo									
Tração N _{Rec}	HIT-V, HAS-(E)	[kN]	-	6,7	9,9	13,9	21,8	32,3	38,1	47,6
Corte V _{Rec}	HIT-V, HAS-(E)	[kN]	-	8,3	12,0	22,4	35,0	50,4	65,6	80,1

Coeficiente de segurança parcial para ações γ=1,4. O coeficiente de segurança parcial para ações depende do tipo de carga e deve ser retirado dos regulamentos nacionais.

Materiais

Propriedades mecânicas

Diâmetro de va	rão roscado		M8	M10	M12	M16	M20	M24	M27	M30
	HIT-V 5.8 HAS-(E) 5.8	[N/mm²]	500	500	500	500	500	500	500	500
	HIT-V 8.8 HAS-(E) 8.8	[N/mm²]	800	800	800	800	800	800	800	800
tração f _{uk}	HIT-V-R HAS-(E)R	[N/mm²]	700	700	700	700	700	700	500	500
	HIT-V-HCR HAS-(E)HCR	[N/mm²]	800	800	800	800	800	700	700	700
	HIT-V 5.8 HAS-(E) 5.8	[N/mm²]	400	400	400	400	400	400	400	400
Limite elástico	HIT-V 8.8 HAS-(E) 8.8	[N/mm²]	640	640	640	640	640	640	640	640
fyk	HIT-V-R HAS-(E)R	[N/mm²]	450	450	450	450	450	450	210	210
	HIT-V-HCR HAS-(E)HCR	[N/mm²]	640	640	640	640	640	400	400	400
Área de seção	HIT-V	[mm²]	36,6	58,0	84,3	157	245	353	459	561
ao corte As	HAS-(E)	[mm²]	32,8	52,3	76,2	144,0	225,0	324,0	427,0	519,0
Momento	HIT-V	[mm³]	31,2	62,3	109	277	541	935	1387	1874
resistente W	HAS-(E)	[mm ³]	27,0	54,1	93,8	244,0	474,0	809,0	1274,0	1706,0

Qualidade do material para HIT-V

Qualitate do material para i mi-v								
Varão	Material							
Aço galvanizado								
Varão roscado,	Classe de resistência 5.8; Alongamento até à rotura A5 > 8% dúctil							
HIT-V 5.8 (F)	Aço galvanizado ≥ 5μm; (F) galvanizado a quente ≥ 45 μm							
Varão roscado,	Classe de resistência 8.8; Alongamento até à rotura A5 > 12% dúctil							
HIT-V 8.8 (F)	Aço galvanizado ≥ 5μm; (F) galvanizado a quente ≥ 45 μm							
Anilha	Aço galvanizado ≥ 5 μm; galvanizado a quente ≥ 45 μm							
Porca	Classe de resistência da porca adaptada à classe de resistência do varão roscado.							
Folca	Aço galvanizado ≥ 5μm; galvanizado a quente ≥ 45 μm							
Aço Inoxidável								
Varão roscado,	Classe de resistência 70 para ≤ M24 e classe de resistência 50 para > M24;							
HIT-V-R	Alongamento até à rotura A5 > 8% dúctil							
HAS-(E)-R	Aço inoxidável 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362							
Anilha	Aço inoxidável 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014							
Porca	Aço inoxidável 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014							
Aço de grande resistência	a à corrosão							
Varão roscado,	Classe de resistência 80 para ≤ M20 e classe de resistência 70 para > M20,							
HIT-V-HCR	Alongamento até à rotura A5 > 8% dúctil							
HAS-(E)-HCR	Aço de grande resistência à corrosão 1.4529; 1.4565;							
Anilha	Aço de grande resistência à corrosão 1.4529, 1.4565 EN 10088-1:2014							
Porca	Aço de grande resistência à corrosão 1.4529, 1.4565 EN 10088-1:2014							

Informação de instalação

Intervalo de temperatura de instalação:

+5°C a +40°C

Intervalo de temperatura de serviço:

Químico de injeção Hilti HIT-RE 100 pode ser aplicado no intervalo de temperatura abaixo indicados. Uma temperatura elevada do material base leva a uma redução do cálculo da resistência ao arranque por aderência.

Intervalo de temperatura	Temperatura do material base	Temperatura máxima do material base a longo prazo	Temperatura máxima do material base a curto prazo
Intervalo de temperatura I	-40 °C a + 40 °C	+ 24 °C	+ 40 °C
Intervalo de temperatura II	-40 °C a + 58 °C	+ 35 °C	+ 58 °C
Intervalo de temperatura III	-40 °C a + 70 °C	+ 43 °C	+ 70 °C

Temperatura máx. do material base a curto prazo

As elevadas temperaturas do material base a curto prazo são as que ocorrem durante breves intervalos, por exemplo, como resultado de ciclos diurnos.

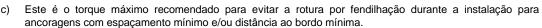
Temperatura máx. do material base a longo prazo

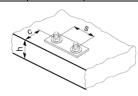
As elevadas temperaturas do material base a longo prazo são relativamente constantes durante períodos de tempo significativos.

Tempo de atuação e de cura

Temperatura do material base	Tempo máximo no qual o varão nervurado pode ser inserido e ajustado t _{work}	Tempo mínimo de cura até que o varão nervurado pode ser inserido t _{cure}
5 °C ≤ T _{BM} < 10 °C	2 h	72 h
10 °C ≤ T _{BM} < 15 °C	1,5 h	48 h
15 °C ≤ T _{BM} < 20 °C	30 min	24 h
20 °C ≤ T _{BM} < 30 °C	20 min	12 h
30 °C ≤ T _{BM} < 40 °C	12 min	8 h
40 °C	12 min	4 h

Os valores do tempo de cura são válidos apenas para o material base seco. Para o material base húmido, os tempos de cura têm de ser duplicados.


Detalhes de instalação


Diâmetro de varão ros	cado		M8	M10	M12	M16	M20	M24	M27	M30
Diâmetro da broca	d ₀	[mm]	10	12	14	18	22	28	30	35
Diâmetro do varão	d	[mm]	8	10	12	16	20	24	27	30
Profun, embebimento			60	60	70	80	90	96	108	120
efet. e profun. do furo	h _{ef}	[mm]	a 160	а 200	a 240	а 320	a 400	a 480	a 540	а 600
Espessura mín. material base	h _{min}	[mm]	h _{ef} +	30 ≥ 100	mm			h _{ef} + 2 d ₀		
Diâmetro máximo do furo na chapa	d _f	[mm]	9	12	14	18	22	26	30	33
Espaçamento mín	Smin	[mm]	40	50	60	80	100	120	135	150
Dist. mín. ao bordo	Cmin	[mm]	40	50	60	80	100	120	135	150
Espaçamento crítico para rotura por fendilhação	S _{cr,sp}	[mm]	2 C _{cr,sp}							
Distância crítica ao			1,0 · I	1 _{ef}	para h / h	n _{ef} ≥ 2,0	h/h _{ef} ²			
bordo para rotura por fendilhação ^{a)}	Ccr,sp	[mm]	4,6 h _{ef} -	1,8 h pa	ara 2,0 > h	/ h _{ef} > 1,3	1,3 -			
Teridiinação 5			2,26	h _{ef}	para h / h	n _{ef} ≤ 1,3	-	1,0·h _e	_{ef} 2,26·h _{ef}	C _{cr,sp}
Espaçamento crítico para rotura por cone de betão	Scr,N	[mm]								
Distância crítica ao bordo para rotura por cone de betão ^{b)}	Ccr,N	[mm]	1,5 h _{ef}							
Torque c)	T_{max}	[Nm]	10	20	40	80	150	200	270	300

Para o espaçamento (distância da aresta) menor que o espaçamento crítico (distância crítica da aresta), as cargas do projeto devem ser reduzidas.

a) $h_{ef,min} \le h_{ef} \le h_{ef,max}$ (h_{ef} profundidade de embebimento) h: espessura do material base ($h \ge h_{min}$)

b) A distância crítica ao bordo para rotura por cone de betão depende da profundidade de embebimento hef e do cálculo da resistência ao arranque por aderência. A fórmula simplificada indicada nesta tabela é conservativa.

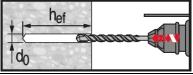
Equipamento de instalação

Diâmetro	M8	M10	M12	M16	M20	M24	M27	M30	
Martelo electropneumático	TE 2– TE 16 TE 40 – TE 80								
Outras ferramentas			Pistola d	e ar comp	primido ou soprador				
Outras terramentas	Conjunto de escovas de limpeza, dispensador, êmbolo aplicador							lor	

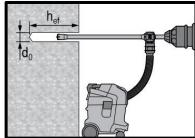
Parâmetros de furação e limpeza

HIT-V	Diâmetro da l	oroca d₀ [mm]	Diâmetro de in	stalação [mm]
HAS	Martelo eletropneumático	Perfuração com broca oca	Escova HIT-RB	Êmbolo HIT-SZ
пинини Ди	TI COMMENT		******	Ţ
M8	10	-	10	-
M10	12	12	12	12
M12	14	14	14	14
M16	18	18	18	18
M20	22	22	22	22
M24	28	28	28	28
M27	30	=	30	30
M30	35	35	35	35

Instruções de instalação

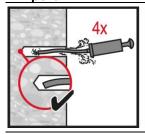

*Consultar as instruções de utilização na caixa do produto para obter informações detalhadas sobre a instalação

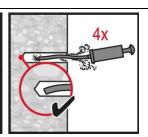
Regulamentos de segurança


Consultar a Ficha de dados de segurança antes de aplicar o produto para garantir um manuseamento adequado e seguro. Deve usar óculos e luvas de proteção adequados quando trabalhar com o Hilti HIT-RE 100.

Perfuração

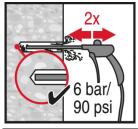
Furo executado com martelo:

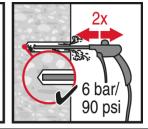

Para betão seco e saturado de água


Furo executado por martelo com broca oca (HDB)

Não necessita de limpeza

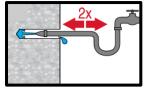
Limpeza

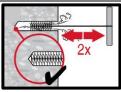


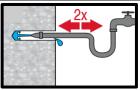


Limpeza manual Apenas betão não fissurado

para diâmetros $d_0 \le 20$ mm e profundidades de furo $h_0 \le 10 \cdot d$

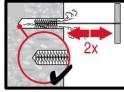




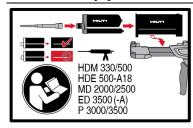


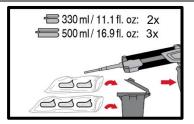
Limpeza a ar comprimido

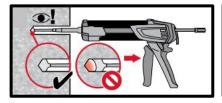
para todos os diâmetros d_0 e profundidades de embebimento $h_0 \le 20 \cdot d$

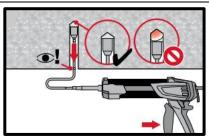


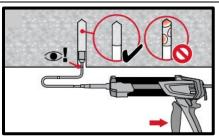
Limpeza com ar comprimido Limpeza de furo inundado

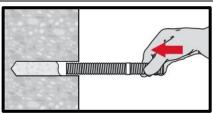

para todos os diâmetros d_0 e profundidades de embebimento h_0

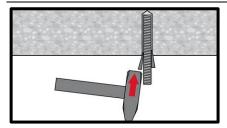



Sistema de injeção

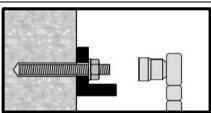

Preparação da sequência de **injeção**




Sequência de injeção para profundidade do furo de h_{ef} > 250mm



Sequência de **injeção** para aplicações acima do nível da cabeça e/ou instalação com profundidade de embebimento h_{ef} > 250 mm


Instalação do elemento metálico

Ao instalar o elemento metálico, respeitar o tempo de atuação "twork"

Ao instalar o elemento metálico em aplicações acima do nível da cabeça, respeitar o tempo de atuação "twork"

Aplicar carga total apenas após o tempo de cura "t_{cure}"

Químico de injeção HIT-RE 100

Dimensionamento (ou cálculo) (ETAG 001) / varão nervurado / Betão

Sistema de químico de injeção

Hilti HIT-RE 100 cartucho de 330 ml

(também disponível em cartucho 500 ml e 1400 ml)

Varão nervurado B500B (\phi8-\phi32)

Vantagens

- Adequado para betão não fissurado e fissurado C 20/25 a C 50/60
- Alta capacidade de carga
- Adequado para betão seco e saturado de água
- Aplicações de grande diâmetro
- Alta capacidade térmica permite trabalhar a temperaturas elevadas
- Epóxi sem odor

Material base

Betão (não fissurado

Betão (fissurado)

Betão seco

Betão húmido

Estática/ quase estática

Condições de instalação

Furos executados por martelo

Profundidade de embebimento variável

Pequena distância ao bordo e embebimento

Outras informações

Marcação CE

Aprovações/certificados

Descrição	Autoridade/Laboratório	N.º/Data de emissão				
Avaliação Técnica Europeia a)	CSTB, Marne la Vallée	ETA-15/0882 / 2017-12-11				

b) Todos os dados técnicos apresentados nesta secção estão de acordo com ETA-15/0882 edição de 2017-12-11.

Carga estática e quase estática (para uma fixação isolada)

Toda a informação desta secção aplica-se a:

- Correta instalação (ver sequência de instalação)
- Sem influências de bordos e espaçamentos entre fixações
- Rotura do Aço
- Espessura do material base, como especificado na tabela abaixo
- -Uma profundidade de embebimento típica, como especificado na tabela
- Espessura do material base conforme especificado na tabela
- Uma profundidade de embebimento típica conforme especificado na tabela
- Betão C 20/25, fck,cube = 25 N/mm²
- Intervalo de temperatura I (temp. mín. material base -40 °C, temp. máx. material base a longo/curto prazo: +24 °C/40 °C)

Profundidade de embebimento e espessura do material base para carga estática e quase estática

Diâmetro de varão rosca	ido	ф8	φ10	φ12	φ14	φ16	φ20	φ25	φ26	φ28	φ30	φ32
Profundidade de Embebimento	[mm]	80	90	110	125	125	170	210	230	270	285	300
Espessura do material base	[mm]	110	120	140	161	165	220	274	294	340	359	380

Resistência caraterística

	J .											
Diâmetro de varão roscado B500 B		ф8	φ10	φ12	φ14	φ16	φ20	φ25	φ26	ф28	ф30	ф32
Betão não fissurado												
Tração N _{Rk}	[kN]	28,0	39,6	58,1	66,0	70,6	111,9	153,7	176,2	224,0	243,0	262,4
Corte V _{Rk}	[KIN]	14,0	22,0	31,0	42,0	55,0	86,0	135,0	146,0	169,0	194,0	221,0
Betão fissurado												
Tração N _{Rk}	[kN]	-	19,8	29,0	35,7	40,8	64,1	99,0	103,3	130,6	147,7	165,9
Corte V _{Rk}	[KIN]	-	22,0	31,0	42,0	55,0	86,0	135,0	146,0	169,0	194,0	221,0

Resistência de cálculo

Tradictation de dutation												
Diâmetro de varão roscado B500 B		ф8	φ10	φ12	φ14	φ16	ф20	ф25	ф26	ф28	ф30	ф32
Betão não fissurado												
Tração N _{Rd}	— [kN]	13,4	18,8	27,6	31,4	33,6	53,3	73,2	83,9	106,7	115,7	125,0
Corte V _{Rd}	— [KIN]	11,2	14,7	20,7	28,0	36,7	57,3	90,0	97,3	129,3	129,3	147,3
Betão fissurado												
Tração N _{Rd}	— [kN]	-	9,4	13,8	17,0	19,4	30,5	47,1	49,2	62,2	70,3	79,0
Corte V _{Rd}	[KIN]	-	14,7	20,7	28,0	36,7	57,3	90,0	97,3	129,3	129,3	147,3

Cargas de tensão a)

Diâmetro de varão roscado B500 B	ф8	φ10	φ12	ф14	φ16	φ20	ф25	ф26	ф28	ф30	ф32	
Betão não fissurado												
Tração N _{Rd} [kN]	9,6	13,5	19,7	22,4	24,0	38,1	52,3	59,9	76,2	82,6	89,3	
Corte V _{Rd}	8,0	10,5	14,8	20,0	26,2	41,0	64,3	69,5	80,5	92,4	105,2	
Betão fissurado												
Tração N _{Rd} [kN]	-	6,7	9,9	12,2	13,9	21,8	33,7	35,1	44,4	50,2	56,4	
Corte V _{Rd}	-	10,5	14,8	20,0	26,2	41,0	64,3	69,5	80,5	92,4	105,2	

a) Coeficiente de segurança parcial para ações γ=1,4. O coeficiente de segurança parcial para ações depende do tipo de carga e deve ser retirado dos regulamentos nacionais.

Materiais

Propriedades mecânicas

Diâmetro de varão roscado		ф8	φ10	φ12	φ14	φ16	φ20	φ25	φ26	φ28	ф30	ф32
Resistência à tração f _{uk}	[N/mm²]	550	550	550	550	550	550	550	550	550	550	550
Limite elástico fyk	[N/mm²]	500	500	500	500	500	500	500	500	500	500	500
Área de secção ao corte As	[mm²]	50,3	78,5	113,1	153,9	201,1	314,2	490,9	531	615,8	707	804,2
Momento resistente W	[mm³]	50,3	98,2	169,6	269,4	402,1	785,4	1534	1726	2155	2651	3217

Qualidade do material

Varão nervurado	Material
Varão nervurado EN 1992-1-1:2004	Barras e varões sem rosca de classe B ou C II de acordo com NDP ou NCL da EN 1992-1-1/NA:2013

Informações de instalação

Intervalo de temperatura de instalação

-5°C a +40°C

Intervalo de temperatura de serviço

O químico de injeção Hilti HIT-RE 100 pode ser aplicado no intervalo de temperatura abaixo indicados. Uma temperatura elevada do material base leva a uma redução do cálculo da resistência ao arranque por aderência.

Intervalo de temperatura	Temperatura do material base	Temperatura máxima do material base a longo prazo	Temperatura máxima do material base a curto prazo
Intervalo de temperatura I	-40 °C a + 40 °C	+ 24 °C	+ 40 °C
Intervalo de temperatura II	-40 °C a + 58 °C	+ 35 °C	+ 58 °C
Intervalo de temperatura III	-40 °C a + 70 °C	+ 43 °C	+ 70 °C

Temperatura máx. do material base a curto prazo

As elevadas temperaturas do material base a curto prazo são as que ocorrem durante breves intervalos, por exemplo, como resultado de ciclos diurnos.

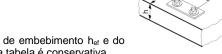
Temperatura máx. do material base a longo prazo

As elevadas temperaturas do material base a longo prazo são relativamente constantes durante períodos de tempo significativos.

Tempo de atuação e de cura

Temperatura do material base	Tempo de trabalho máx. em que o varão de aço pode ser inserido e ajustado t _{gel}	Tempo de cura mín. até que o varão de aço possa ser totalmente carregado t _{cure}
5 °C ≤ T _{BM} < 10 °C	2 h	72 h
10 °C ≤ T _{BM} < 15 °C	1,5 h	48 h
15 °C ≤ T _{BM} < 20 °C	30 min	24 h
20 °C ≤ T _{BM} < 30 °C	20 min	12 h
30 °C ≤ T _{BM} < 40 °C	12 min	8 h
40 °C	12 min	4 h

Os valores do tempo de cura são válidos apenas para o material base seco. Para o material base húmido, os tempos de cura têm de ser duplicados.



Detalhes de instalação

Diâmetro de varão r	oscad	0	Ø8	Ø10	Ø	12	Ø14	Ø16	Ø20	Ø25	Ø26	Ø28	Ø30	Ø32
Diâmetro da broca	d ₀	[mm]	10 / 12 ^{a)}	12 / 14 ^{a)}	14 ^{a)}	16 ^{a)}	18	20	24 / 25 ^{a)}	30 / 32 ^{a)}	32	35	37	40
Profundidade efetiva	h _{ef,mi}	[mm]	60	60	70	70	75	80	90	100	104	112	120	128
de ancoragem ^{b)}	h _{ef,ma}	[mm]	160	200	240	240	280	320	400	500	520	560	600	640
Espessura mín. material base	h _{min}	[mm]		f + 30 r : 100 m					ŀ	n _{ef} + 2 (do			
Espaçamento mín.	Smin	[mm]	40	50	60	60	70	80	100	125	130	140	150	160
Dist. mín. ao bordo	C _{min}	[mm]	40	50	60	60	70	80	100	125	130	140	150	160
Espaçamento crítico para rotura por fendilhação	Scr,sp	[mm]						2 c	cr,sp					
Distância crítica ao			1	1,0 ⋅ h _{ef}		pa	ara h /	h _{ef} ≥ 2,	0	h/h _{ef} 2,0 -				
bordo para rotura por fendilhação ^{c)}	Ccr,sp	[mm]	4,6	h _{ef} - 1,	8 h	para	2,0 > l	h / h _{ef} >	1,3	1,3 -				
por rendimação 57			2,26 h _{ef} para h / h _{ef} ≤ 1,3						c _{cr,sp}					
Espaçamento crítico	Scr,N	[mm]	2 C _{cr,N}											
Distância crítica ao bordo para rotura por cone de betão ^{d)}	C _{cr,N}	[mm]	1,5 h _{ef}											

Para o espaçamento (distância da aresta) menor que o espaçamento crítico (distância crítica da aresta), as cargas do projeto devem ser reduzidas.

- a) ambos os valores dados para o diâmetro da broca podem ser usados
- b) h_{ef,min} ≤ h_{ef} ≤ h_{ef,max} (h_{ef}: profundidade de embebimento)
- c) h: espessura do material base ($h \ge h_{min}$)
- d) A distância crítica ao bordo para rotura por cone de betão depende da profundidade de embebimento h_{ef} e do cálculo da resistência ao arranque por aderência. A fórmula simplificada indicada nesta tabela é conservativa.

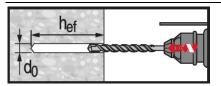
Equipamento de instalação

Diâmetro da broca	ф8	φ10	φ12	φ14	φ16	φ20	φ25	φ26	φ28	φ30	ф32		
Martelo rotativo	TE 2– TE 16							TE 40 – TE 80					
Outras ferramentas		Conjur				•		oprador dor, êm	Ibolo ap	olicador			

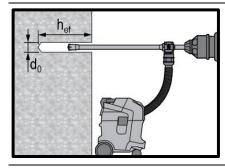
Parâmetros de limpeza e de perfuração

Varão nervurado	Diâmetro da k	oroca d₀ [mm]	Diâmetro da ir	stalação [mm]
[mm]	Martelo eletropneumático	Perfuração com broca oca	Escova HIT-RB	Êmbolo HIT-SZ
V/2/2/2/2/2/2				
ф8	10 / 12 a)	12 a)	10 / 12 a)	- / 12 ^{a)}
φ10	12 / 14 ^{a)}	12 / 14 ^{a)}	12 / 14 ^{a)}	12 / 14 ^{a)}
φ12	14 / 16 a)	14 / 16 a)	14 / 16 ^{a)}	14 / 16 a)
φ14	18	18	18	18
φ16	20	20	20	20
φ20	24 / 25 ^{a)}	24 / 25 ^{a)}	24 / 25 ^{a)}	24 / 25 ^{a)}
φ25	30 / 32a)	32 ^{a)}	30 / 32a)	30 / 32a)
φ26	32	32	32	32
φ28	35	-	35	35
φ30	37	-	37	37
ф32	40	-	40	40

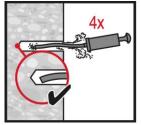
a) Ambos os valores dados podem ser usados

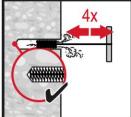

Instruções de instalação

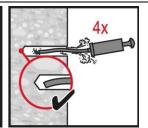
Consultar as instruções de utilização na caixa do produto para obter informações detalhadas sobre a instalação.


Regulamentos de segurança

Consultar a ficha de dados de segurança antes de aplicar o produto para garantir um manuseamento adequado e seguro. Deve usar óculos e luvas de proteção adequados quando trabalhar com o Hilti HIT-RE 100.

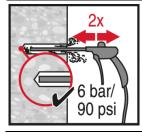

Furo executado com martelo

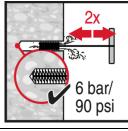

Para betão seco e saturado de água



Furo executado por martelo com broca oca (HDB)

Não necessita de limpeza

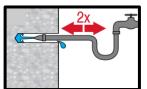


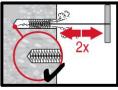


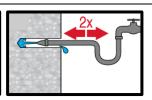


Limpeza manual (LM) Apenas betão não fissurado

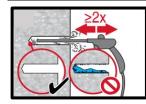
para diâmetros $d_0 \le 20$ mm e profundidades de furo $h_0 \le 10 \cdot d$

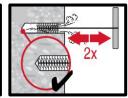




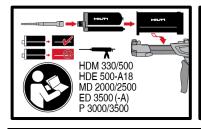

Perfuração com coroa diamantada:

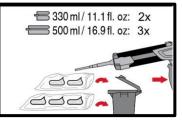
Limpeza com ar comprimido (LAC)

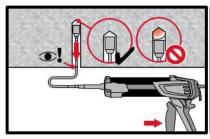

Para todos os diâmetros d_0 e profundidades de embebimento $h_0 \le 20 \cdot d$

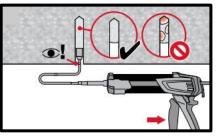


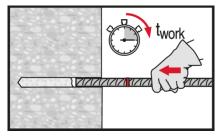
Limpeza com ar comprimido (LAC) Limpeza de furos inundados

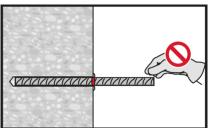


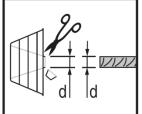


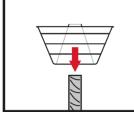

Para todos os diâmetros d₀ e profundidades de embebimento h₀

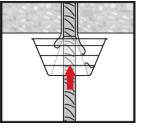


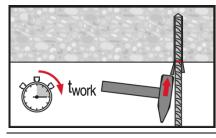


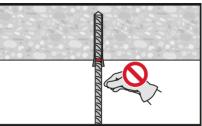

Preparação do sistema de injeção.




Sequência de **injeção** para aplicações acima do nível da cabeça e/ou instalação com profundidade de embebimento h_{ef} ≤ 250 mm






Ao instalar o elemento metálico, respeitar o tempo de atuação "twork".

Ao instalar o elemento metálico em aplicações acima do nível da cabeça, respeitar o tempo de atuação "twork".

Químico de injeção HIT-RE 100

Dimensionamento (ou cálculo) (EN 1992-1) / Varão nervurado / Betão

Sistema de químico de injeção

Hilti HIT-RE 100 cartucho de

330 ml

(também disponível em cartucho de 500 ml e 1400 ml) Adequado para betão C 12/15 a C 50/60

- Alta capacidade de carga

Vantagens

 Adequado para betão seco e saturado de água

 Para diâmetros de varão nervurado até 40 mm

 Não corrosivo para varão nervurado

- Alta

 Alta capacidade térmica permite trabalhar a temperaturas elevadas

 Adequado para profundidades de embebimento até 3200 mm

soup resources with the state of the state of

Varão nervurado B500 B

Condições de carga

 $(\phi 8 - \phi 40)$

Material base

Betão (não fissurado)

Betão (fissurado)

Betão seco

Betão saturado de água

Estática/quase estática

Resistência ao fogo

Condições de instalação

Furos executados por martelo

Perfuração com coroa diamantada

Outras informações

Avaliação Técnica Europeia

Marcação CE

Aprovações / Certificados

Descrição	Autoridade/Laboratório	N.º/Data de emissão		
Avaliação Técnica Europeia a)	DIBt, Berlin	ETA - 15/0883 / 2017-12-06		
Teste ao fogo	MFPA, Liepzig	GS 3,2/15-431-4 / 2016-04-29		

a) Todos os dados técnicos apresentados nesta secção estão de acordo com ETA-15/0883 edição de 2017-12-06.

Informações básicas de cálculo

Cálculo estático EC2

Cálculo de resistência ao arranque por aderência N/mm² de acordo com a ETA 15/0883 para boas condições de aderência

Diâmetro do				Cla	sse do be	tão						
varão nervurado	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60			
São permitidos	São permitidos todos os métodos de furação											
φ8 - φ32	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3			
ф34	1,6	2,0	2,3	2,6	2,9	3,3	3,6	3,9	4,2			
φ36	1,5	1,9	2,2	2,6	2,9	3,3	3,6	3,8	4,1			
φ40	1,5	1,8	2,1	2,5	2,8	3,1	3,4	3,7	4,0			
Furação diama	ntada com	água										
φ8 - φ32	1,6	2,0	2,3			2,	,7					
ф34	1,6	2,0	2,3	2,6								
ф36	1,5	1,9	2,2	2,6								
φ40	1,5	1,8	2,1			2,	5	•	·			

Para condições de aderência fracas multiplicar os valores por 0,7. Valores válidos para betão fissurado e não fissurado.

Comprimento mínimo de amarração e comprimento mínimo da emenda

O comprimento mínimo de ancoragem $\ell_{\text{b,min}}$ e o comprimento mínimo de sobreposição da armadura $\ell_{\text{0,min}}$ de acordo com EN 1992-1-1 deve ser multiplicado pelo **fator de amplificação** relevante dado na tabela abaixo.

Fator de amplificação α_{lb} para o comprimento mínimo da emenda e comprimento mínimo da ancoragem de acordo com a EN 1992-1-1 para:

Diâmetro do varão	Classe do betão										
nervurado	C12/15	6 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55									
São permitidos todos	os métoc	métodos de furação									
ф8 -ф40					1,0						
Furação diamantada	a seco e c	seco e com água									
ф8 -ф40					1,5						

Valores pré-calculados¹⁾ – comprimento da ancoragem

Resistência à tração do varão nervurado f_{vk}=500 N/mm², betão C25/30, para boas condições de ligação

Diâmetro do varão	Comprimento da ancoragem	Valor calculado	Volume de químico ²⁾	Comprimento da ancoragem	Valor calculado	Volume de químico ²⁾
nervurado	I _{bd} [mm]	N _{Rd} [KN]	V _M [ml]	I _{bd} [mm]	N _{Rd} [KN]	V _M [ml]
	$\alpha_1 = \alpha_2 =$	$\alpha_3=\alpha_4=\alpha_5=1,0$		$\alpha_1 = \alpha_3 = \alpha_4 = 1$	0 α_2 ou $\alpha_5=$	0,7
	100	6,8	8	100	9,7	8
10	170	11,5	13	140	13,6	11
φ8	250	17,0	19	180	17,4	14
	322,1	21,9	24	225,4	21,9	17
	121	10,3	11	121	14,7	11
110	220	18,7	20	170	20,6	15
φ10	310	26,3	28	230	27,9	21
	402,6	34,1	36	281,8	34,1	25
	145	14,8	15	145	21,1	15
410	260	26,5	27	210	30,5	22
φ12	370	37,7	39	270	39,3	29
	483,1	49,2	51	338,2	49,2	36
	169	20,1	20	169	28,7	20
41 1	300	35,6	36	240	40,7	29
φ14	430	51,1	52	320	54,3	39
	563,6	66,9	68	394,5	66,9	48

Valores pré-calculados¹⁾ – comprimento da ancoragem

Resistência à tração do varão nervurado f_{yk}=500 N/mm², betão C25/30, para boas condições de ligação

Diâmetro do varão	Comprimento da ancoragem	Valor calculado	Volume de químico ²⁾	Comprimento da ancoragem	Valor calculado	Volume de químico ²⁾
nervurado	I _{bd} [mm]	N _{Rd} [KN]	V _M [ml]	I _{bd} [mm]	N _{Rd} [KN]	V _M [ml]
	$\alpha_1 = \alpha_2 =$	$=\alpha_3=\alpha_4=\alpha_5=1,0$		$\alpha_1=\alpha_3=\alpha_4=1$	$1,0$ α_2 ou α_5 =	:0,7
-	T		T	-		1
	390	66,2	83	350	84,8	74
	550	93,3	117	460	111,5	98
	805,2	136,6	171	563,6	136,6	120
	266	49,6	75	266	70,9	75
φ22	410	76,5	116	380	101,3	107
ΨΖΖ	560	104,5	158	500	133,3	141
	885,7	165,3	250	620	165,3	175
	290	59	122	290	84,3	122
φ24	430	87,5	182	420	122,1	177
Ψ2-4	560	114	236	550	160	232
	966,2	196,7	408	676,3	196,7	286
	302	64	114	302	91,5	114
φ25	430	91,2	162	430	130,3	162
ΨΖΟ	570	120,9	214	570	172,7	214
	1006,4	213,4	378	704,5	213,4	265
	350	83,1	145	338	114,7	140
φ28	595	141,3	247	480	162,9	200
ΨΖΟ	875	207,8	364	635	215,5	264
	1127,2	267,7	469	789	267,7	328
	374	95,2	165	374	136	165
130	635	161,6	281	528	191,9	233
φ30	935	237,9	413	700	254,5	309
	1207,7	307,3	534	845,4	307,3	374
	400	108,6	217	400	155,1	217
	680	184,6	369	580	224,9	315
φ32	1000	271,4	543	800	310,2	434
	1288,2	349,7	699	901,8	349,7	490
	450	132,3	387	440	184,8	379
	765	225	658	640	268,8	551
φ36	1125	330,8	968	900	378,1	774
	1505,0	442,6	1295	1053,5	442,6	907
	500	157,1	520	485	217,7	505
	850	267	884	700	314,2	728
φ40	1000	314,2	1040	990	444,3	1030
			_			+
1) Os valo	1739,1	546,4	1810	1217,4 arga máxima admissível é v	546,4	1267

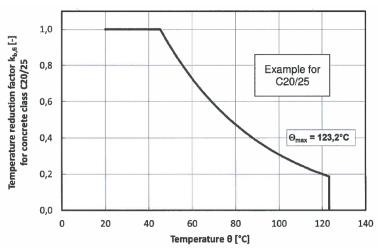
Os valores correspondem ao comprimento mínimo de ancoragem. A carga máxima admissível é válida para "boas condições de ligação", conforme descrito na norma EN 1992-1-1. Para todas as outras condições, multiplicar pelo valor por 0,7.

²⁾ O volume de químico a dispensar corresponde à fórmula "1,2*(d₀²-d_s²)*π*lb/4" para perfuração com martelo eletropneumático.

Valores pré-calculados - Comprimento de sobreposição

Resistência à tração do varão nervurado f_{yk}=500 N/mm², betão C25/30, para boas condições de ligação

Diâmetro do varão	Comprimento de sobreposição	Valor calculado	Volume de químico ²⁾	Comprimento de sobreposição	Valor	Volume de químico ²⁾	
nervurado	l₀[mm]	N _{Rd} [KN]	V _M [ml]	l₀[mm]	N _{Rd} [KN]	V _M [ml]	
	α ₁ =	$=\alpha_2=\alpha_3=\alpha_4=\alpha_5=1$,0	$\alpha_1 = \alpha_2$	$\alpha_3=\alpha_4=1,0$ α_2 o	u α ₅ = 0 ,7	
	200	13,6	15	200	19,4	15	
ф8	240	16,3	18	210	20,4	16	
ψο	280	19	21	220	21,3	17	
	322,1	21,9	24	225,4	21,9	17	
	200	17	18	200	24,2	18	
φ10	270	22,9	24	230	27,9	21	
φισ	340	28,8	31	250	30,3	23	
	402,6	34,1	36	281,8	34,1	25	
	200	20,4	21	200	29,1	21	
φ12	290	29,5	31	250	36,4	26	
ΨΙΖ	390	39,7	41	290	42,2	31	
	483,1	49,2	51	338,2	49,2	36	
	210	24,9	25	210	35,6	25	
414	330	39,2	40	270	45,8	33	
φ14	450	53,4	54	330	56	40	
	563,6	66,9	68	394,5	66,9	48	
	240	32,6	33	240	46,5	33	
146	370	50,2	50	310	60,1	42	
φ16	510	69,2	69	380	73,7	52	
	644	87,4	87	450,9	87,4	61	
	270	41,2	41	270	58,9	41	
110	410	62,6	62	350	76,3	53	
φ18	560	85,5	84	430	93,8	65	
	724,6	110,6	109	507,2	110,6	76	
	300	50,9	64	300	72,7	64	
*30	430	72,9	91	390	94,5	83	
φ20	570	96,7	121	480	116,3	102	
	805,2	136,6	171	563,6	136,6	120	
	330	61,6	93	330	88	93	
φ22	450	84	127	430	114,6	122	
ΨΖΖ	580	108,2	164	520	138,6	147	
	885,7	165,3	250	620	165,3	175	
	360	73,3	152	360	104,7	152	
φ24	470	95,7	198	470	136,7	198	
Ψ ∠ 4	590	120,1	249	570	165,8	241	
	966,2	196,7	408	676,3	196,7	286	
	375	79,5	141	375	113,6	141	
φ25	430	91,2	162	480	145,4	181	
ΨΖΟ	570	120,9	214	590	178,7	222	
	1006,4	213,4	378	704,5	213,4	265	
	420	99,8	175	420	142,5	175	
φ28	595	141,3	247	530	179,8	220	
ΨΖΟ	875	207,8	364	635	215,5	264	
	1127,2	267,7	469	789	267,7	328	


Valores pré-calculados - Comprimento de sobreposição

Resistência à tração do varão nervurado f_{vk}=500 N/mm², betão C25/30, para boas condições de ligação

Diâmetro do varão	Comprimento de sobreposição	Valor calculado	Volume de químico ²⁾	Comprimento de sobreposição	Valor calculado	Volume de químico ²⁾		
nervurado	l₀[mm]	N _{Rd} [KN]	V _M [ml]	l₀ [mm]	N _{Rd} [KN]	V _M [ml]		
	α1=	$\alpha_2=\alpha_3=\alpha_4=\alpha_5=1$,0	$\alpha_1=\alpha_3=\alpha_4=1,0$ α_2 ou $\alpha_5=0,7$				
	450	114,5	199	450	163,6	199		
φ30	635	161,6	281	528	191,9	233		
φου	935	237,9	413	700	254,5	309		
	1207,7	307,3	534	845,4	307,3	374		
	480	130,3	261	480	186,1	261		
φ32	680	184,6	369	650	252	353		
ψ32	1000	271,4	543	800	310,2	434		
	1288,2	349,7	699	901,8	349,7	490		
	540	158,8	465	540	218,1	465		
136	765	225,0	658	720	290,0	620		
ф36	1125	330,8	968	900	363,5	774		
	1505,0	442,6	1295	1053,5	442,6	907		
	600	188,5	624	600	269,3	624		
440	850	267,0	884	750	336,6	780		
ф40	1000	314,2	1040	990	444,3	1030		
	1739,1	505,9	1676	1217,4	546,4	1267		

Os valores correspondem ao comprimento mínimo de ancoragem. A carga máxima admissível é válida para "boas condições de ligação", conforme descrito na norma EN 1992-1-1. Para todas as outras condições, multiplicar pelo valor por 0,7.

Resistência ao fogo

O valor de cálculo da resistência ligação fbd, fi sob a exposição ao fogo deve ser calculado pela seguinte equação:

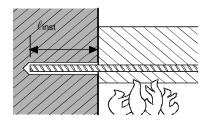
$$f_{bd,fi} = k_{b,fi}(\theta) \cdot f_{bd} \cdot \gamma_c / \gamma_{M,fi}$$

Com: $\theta \le 123,2^{\circ}\text{C}$: $k_{b,fi}(\theta) = 26,424 \cdot \mathrm{e}^{-0,0215 \cdot \mathrm{e}}/f_{bd} \cdot 4,3 \le 1,0$

 $\theta > 123,2^{\circ}C$: $k_{b.fi}(\theta) = 0,0$

f_{bd,fi} valores de cálculo para tensão de ligação máxima em caso de fogo em N/mm²

 θ temperatura o C na camada de químico $k_{b,fi}(\theta)$ fator redutor quando exposto ao fogo


Valores de cálculo para tensão de ligação máxima em N/mm₂ em condições frias

 γ_c fator de segurança parcial de acordo com EN 1992-1-1 $\gamma_{M,fi}$ fator de segurança parcial de acordo com EN 1992-1-2

²⁾ O volume de químico a dispensar corresponde à fórmula "1,2*(d₀²-d₅²)*π*lb/4" para perfuração com martelo eletropneumático

a) Aplicação da ancoragem

Conexão da parede de vigas de ancoragem com um recobrimento de betão de 20 mm

Força máxima ($F_{s,T,max}$) do varão nervurado em conjunto com o HIT-RE 100 em função da profundidade de embebimento (ℓ_{inst}) das classes de resistência ao fogo F30 a F240 conforme EC2

Diâmetro	ento (t _{inst}) das d	ℓ_{inst}			cia ao fogo		n [kN]	
do varão nervurado	F _{s,T,max} [kN]	[mm]	R30	R60	R90	R120	R180	R240
		100	3,4	1,0	0,2	_		
		110	4,3	1,7	0,5	_	-	_
		140	6,9	4,2	2,2	0,9		_
		160	8,6	6,0	3,9	2,1	0,5	
ф8	16,8	260		14,6	12,5	10,7	7,7	5,3
ΨΟ	10,0	290			15,1	13,3	10,3	7,9
		310	16,8			15,1	12,1	9,6
	330	10,0	16,8	16,8		13,8	11,4	
		370			10,0	16,8	16,8	14,8
		400					10,0	16,8
		110	5,3	2,1	0,6	-		
		140	8,6	5,3	2,7	1,2		-
	φ10 26,2	160	10,8	7,4	4,8	2,7	0,6	
		260	21,6	18,3	15,7	13,4	9,7	6,6
410		290	24,8	21,5	18,9	16,7	12,9	9,9
φ10	20,2	310		23,7	21,1	18,8	15,1	12,0
		340	26,2		24,3	22,1	18,3	15,3
		360		26,2		24,2	20,5	17,5
		380		20,2	26,2	26,2	22,7	19,6
		450				20,2	26,2	26,2
		130	9,0	5,0	2,2	0,8		
		140	10,3	6,3	3,2	1,4	-	-
		160	12,9	8,9	5,8	3,2	0,8	
φ12	37,7	260	25,9	21,9	18,8	16,1	11,6	7,9
ΨΙΖ	31,1	360		35,0	31,8	29,1	24,6	20,9
		390	37,7		35,7	33,0	28,5	24,8
		450	37,7	37,7	37,7	37,7	36,3	32,6
		500			37,7	37,7	37,7	37,7
		160	15,1	10,4	6,8	3,7	0,9	-
		260	30,2	25,6	21,9	18,8	13,5	9,3
		360	45,4	40,8	37,1	33,9	28,7	24,4
φ14	51,3	400		46,8	43,2	40,0	34,8	30,5
		450	51,3		50,8	47,6	42,4	38,1
		500	51,3	51,3	51,3	51,3	50,0	45,7
		550			51,3	51,3	51,3	51,3

Força máxima ($F_{s,T,max}$) do varão nervurado em conjunto com o HIT-RE 100 em função da profundidade de embebimento (ℓ_{inst}) das classes de resistência ao fogo F30 a F240 conforme EC2

Diâmetro	E	ℓ _{inst} Resistência ao fogo da barra em [kN]						
do varão nervurado	F _{s,T,max} [kN]	[mm]	R30	R60	R90	R120	R180	R240
		180	20,7	15,4	11,2	7,6	2,7	0,9
		260	34,5	29,3	25,1	21,5	15,5	10,6
		360	51,9	46,6	42,4	38,8	32,8	27,9
φ16	67,0	450		62,2	58,0	54,4	48,4	43,5
		500	67,0		66,7	63,1	57,1	52,2
		550	07,0	67,0	67,0	67,0	65,8	60,9
		600			67,0		67,0	67,0
		200	27,2	21,2	16,5	12,4	5,9	2,6
		260	38,9	32,9	28,2	24,1	17,4	11,9
		360	58,4	52,4	47,7	43,6	36,9	31,4
φ18	84,8	500		79,7	75,0	71,0	64,2	58,7
-		550	010			80,7	74,0	68,5
		600	84,8	84,8	84,8	040	83,8	78,2
		650				84,8	84,8	84,8
		220	34,5	27,9	22,7	18,2	10,7	5,5
		260	43,2	36,6	31,3	26,8	19,4	13,2
		360	64,9	58,3	53,0	48,5	41,0	34,9
ф20	104,7	550	,	99,4	94,2	89,7	82,2	76,1
'		600	1017	,	104,7	100,5	93,1	86,9
		650	104,7	104,7			103,9	97,8
		700		101,1	104,7	104,7	104,7	104,7
		240	42,7	35,5	29,7	24,7	16,5	9,9
		360	71,3	64,1	58,3	53,3	45,1	38,4
		500	104,7	97,5	91,7	86,7	78,5	71,8
ф22	126,7	600	, ,	121,3	115,5	110,6	102,4	95,6
Ψ	,-	650		121,0	110,0	122,5	114,3	107,5
		700	126,7	126,7	126,7		126,2	119,5
		750		120,1	120,1	126,7	126,7	126,7
		270	54,4	46,5	40,2	34,8	25,8	18,5
		360	77,8	69,9	63,6	58,2	49,2	41,9
104	450.0	650	1-	145,3	139,1	133,6	124,7	117,3
φ24	150,8	700	450.0	- , -	,	146,6	137,7	130,3
		750	150,8	150,8	150,8		150,7	143,3
		800				150,8	150,8	150,8
		280	59,4	51,1	44,6	38,9	29,6	22,0
		360	81,1	72,8	66,3	60,6	51,3	43,6
ф25	163,6	700			158,4	152,8	143,4	135,8
Ψ23	100,0	750	163,6	163,6			157,0	149,3
		800	100,0	700,0	163,6	163,6	163,6	162,9
		850						163,6
		290	64,6	56,0	49,2	43,3	33,6	25,6
		360	84,3	75,7	68,9	63,0	53,3	45,4
φ26	177,0	700		171,5	164,7	158,9	149,2	141,2
'	,	750	177,0	477.0	477.0	173,0	163,2	155,3
		800		177,0	177,0	177,0	177,0	169,4
		850	70.0	64.4	F4.0			177,0
		300	70,0	61,1	54,0	47,9 106.4	37,8	29,6
		500 750	128,5	119,6	112,5 185,7	106,4 179,6	96,4 169,5	88,1 161,2
φ27	190,9	800			100,1	173,0	184,2	175,9
		850	190,9	190,9	190,9	190,9		190,5
		900			100,0	100,0	190,9	190,9
		300	75,6	66,4	59,0	52,7	42,3	33,7
		500	133,3	124,0	116,7	110,4	99,9	91,3
	005.0	750	. 55,5	199,9	192,6	186,3	175,8	167,2
ф28	205,3	800	005.0	.00,0	1.02,0	201,4	191,0	182,4
		850	205,3	205,3	205,3			197,6
		900				205,3	205,3	205,3
				1	1	1	1	200,0

Força máxima ($F_{s,T,max}$) do varão nervurado em conjunto com o HIT-RE 100 em função da profundidade de embebimento (ℓ_{inst}) das classes de resistência ao fogo F30 a F240 conforme EC2

Diâmetro	E -	ℓ_{inst}		Resistênc	cia ao fogo	da barra er	n [kN]	
do varão nervurado	F _{s,T,max} [kN]	[mm]	R30	R60	R90	R120	R180	R240
							-	-
		330	87,5	77,6	69,8	63,0	51,8	42,6
		500	142,8	132,9	125,0	118,3	107,1	97,9
φ30	235,6	800		230,4	222,6	215,8	204,6	195,4
φου	233,0	850	235,6			232,1	220,9	211,7
		900	233,0	235,6	235,6	235,6	225 6	227,9
		950				235,0	235,6	235,6
		350	100,3	89,7	81,4	74,1	62,2	
		500	152,3	141,8	133,4	126,2	114,2	104,4
φ32	268,1	850		263,2	254,8	247,5	235,6	225,8
		900	268,1	268,1	268,1	264,9	252,9	243,1
		950		200, 1	200, 1	268,1	268,1	260,5
		370	113,9	102,7	93,8	86,1	73,4	63,0
124	302,6	500	161,8	150,6	141,7	134,0	121,3	110,9
ф34	302,0	900	202.6	298,0	289,1	281,4	268,8	258,3
		950	302,6	302,6	302,6	299,9	287,2	276,8
		400	132,3	120,5	111,0	102,9	89,5	78,4
136	339,3	600	210,4	198,5	189,1	180,9	167,5	156,5
ф36	339,3	800	288,4	276,5	267,1	259,0	245,5	234,5
		950	339,3	335,1	325,6	317,5	304,1	293,0
		450	168,7	155,5	145,1	136,0	121,1	108,8
40	385,5	600	233,8	220,6	210,1	201,0	186,1	173,9
φ40	303,3	800	320,5	307,3	296,8	287,8	272,8	260,6
		950	385,5	372,3	361,8	352,8	337,9	325,6

^{*}Para valores adicionais ver GS 3,2/15-431-4 relatório antifogo,

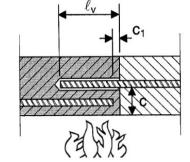
Resistência caraterística do aço f_{yk} = 500 N/mm²

Rotura do aço

b) Sobreposição de armaduras

Tensão de ligação Max., f_{bd,FIRE}, depende do recobrimento de betão para classificar a sua resistência ao fogo.

Deve ser verificado que a força real que atua sobre a barra durante o fogo, $F_{s,T}$, pode ser suportada pela conexão com o comprimento selecionado, ℓ_{inst} , Nota: Para ULS é mandatório cálculo a frio


 $F_{s, T} \le (\ell_{inst} - c_f) \cdot \phi \cdot \pi \cdot f_{bd, FIRE}$ em que: $(\ell_{inst} - c_f) \ge \ell_s$;

 ℓ_s = comprimento da emenda

 $\ell_{\text{inst}} - c_f \;$ = sobreposição de armadura selecionada deve ser pelo menos

 $\ell_{\text{s}},$ mas não pode ser assumido como sendo mais do que 80 ϕ

f_{bd,FIRE} = tensão de ligação quando exposto ao fogo

A tensão de ligação, fbd,FIRE, relativa à "sobreposição da armadura" para o químico de injecção Hilti HIT-RE 100 em relação à classe de resistência ao fogo e ao recobrimento mínimo necessário de betão c

Recobrimento de betão c		Tensão de ligação max, τ _c [N/mm²]							
[mm]	R30	R60	R90	R120	R180	R240			
50	0,9								
60	1,7								
70	2,7								
80		1,0							
90	3,5	1,6							
100		2,3	1,0						

A tensão de ligação, fbd,FIRE, relativa à "sobreposição da armadura" para o químico de injecção Hilti HIT-RE 100 em relação à classe de resistência ao fogo e ao recobrimento mínimo necessário de betão c

Recobrimento de betão c		Tens	são de ligação	o max, τ _c [N/ι	nm²]	
[mm]	R30	R60	R90	R120	R180	R240
110		3,0	1,4	0,7		
120			1,9	1,0		
130			2,5	1,4		
140			3,1	1,9	0,7	
150				2,4	1,0	
160				2,9	1,3	
170				3,4	1,7	0,9
180					2,1	1,1
190		3,5			2,5	1,4
200			3,5		2,9	1,7
210			3,5		3,3	2,1
220				3,5		2,5
230						2,8
240					3,5	3,1
250						3,5
260						3,5

Materiais

Qualidade do material

Varão nervurado	Material
Varão nervurado EN 1992-1-1:2004+AC:2010	Barras e varões sem rosca de classe B ou C com f_{yk} e k de acordo com a NDP ou NCL da EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$

Aptidão para o uso

Alguns testes de fluência foram realizados de acordo com a diretriz ETAG 001 parte 5 e TR 023 nas seguintes condições: **em ambiente seco a 50 ° C durante 90 dias.**

Estes testes mostram um excelente comportamento da ligação pós-instalação feita com o HIT-RE 100: baixos deslocamentos com estabilidade a longo prazo, a falha ocorre após exposição acima da carga de referência.

Resistência a substâncias químicas

Químicos testados	Resistência
Ácido acético 100%	0
Ácido acético 10%	+
Ácido clorídrico 20%	+
Ácido nítrico 40%	-
Ácido fosfórico 40%	+
Ácido sulfúrico 40%	+
Acetato de etila 100%	0
Acetona 100%	-
Amoníaco 5%	0
Diesel 100%	+
Gasolina 100%	+
Etanol 96%	0
Óleos de máquina 100%	+

Químicos testados	Resistência
Metanol 100%	0
Peróxido de hidrogénio 30%	0
Solução de fenol (sat,)	-
Hidróxido de sódio pH=14	+
Solução de cloro (sat,)	+
Solução de hidrocarbonetos (60% vol Tolueno, 30% vol Xileno, 10% vol Metil naftaleno)	+
Solução salgada 10%	+
Cloreto de sódio	
Suspensão de lamas de betão (sat,)	+
Clorofórmio 100%	+
Xileno 100%	+

- resistente
- o resistente durante pouco tempo (max, 48h)
- não resistente

Condutividade elétrica

HIT-RE 100 no estado sólido **não é um bom condutor elétrico**. A sua condutividade elétrica é de 1,4·10¹⁰ Ω ·m (DIN IEC 93 – 12,93. Está bem adaptado para realizar ancoragens eletricamente isoladas (ex: aplicações ferroviárias, metro).

Intervalo de temperatura de instalação

-5°C a +40°C

Intervalo de temperatura de serviço

O químico de injeção Hilti HIT-RE 100 pode ser aplicado dentro dos intervalos de temperatura abaixo indicadas. Uma temperatura elevada do material base leva a uma redução do cálculo da resistência ao arranque por aderência.

Intervalo de temperatura	Temperatura do material base	Temperatura máxima do material base a longo prazo	Temperatura máxima do material base a curto prazo
Intervalo de temperatura I	-40 °C a +80 °C	+50 °C	+80 °C

Temperatura máx. do material base a curto prazo

As elevadas temperaturas do material base a curto prazo são as que ocorrem durante breves intervalos, por exemplo, como resultado de ciclos diurnos.

Temperatura máx. do material base a longo prazo

As elevadas temperaturas do material base a longo prazo são relativamente constantes durante períodos de tempo significativos.

Tempo de atuação e de cura^{a)}

	~		
Temperatura no material base Tempo de atuação		Tempo de cura inicial	Tempo de cura mínimo
Твм	t _{work}	t _{cure,ini} b)	t _{cure}
5 °C ≤ T _{BM} < 9 °C	2 horas	18 horas	72 horas
10 °C ≤ T _{BM} < 14 °C	1,5 horas	12 horas	48 horas
15 °C ≤ T _{BM} < 19 °C	30 min	8 horas	24 horas
20 °C ≤ T _{BM} < 24 °C	25 min	6 horas	12 horas
$25~^{\circ}C \leq T_{BM} < 29~^{\circ}C$	20 min	5 horas	10 horas
$30~^{\circ}C \leq T_{BM} \leq 39~^{\circ}C$	12 min	4 horas	8 horas
40 °C	12 min	2 horas	4 horas

a) Os valores do tempo de cura s\u00e3o v\u00e1lidos apenas para o material base seco. Para o material base h\u00eamido, os tempos de cura t\u00e0m de ser duplicados.

Detalhes de instalação

Equipamento de instalação

Diâmetro do varão nervurado	φ8-φ16	φ18-φ40	
Martelo rotativo	TE2(-A) – TE30(-A)	TE40 - TE80	
	Soprador (h _{ef} ≤ 10·d) -		
Outras ferramentas	Pistola de ar comprimido ^{a)}		
	Conjunto de escovas de limpezab), dispensador, êmbolo aplicador		

a) Pistola de ar comprimido com mangueira extensora para os furos com comprimento maior do que 250 mm (para φ 8 a φ 12) ou maior do que 20·φ (para φ > 12 mm)

b) Depois de t_{cure,ini} ter acabado a preparação pode continuar.

Escovação automática com escova redonda para todos os furos com comprimento maior do que 250 mm (para φ 8 a φ 12) ou maior do que 20-φ (para φ > 12 mm).

Recobrimento mínimo de betão c_{min} do varão nervurado após a instalação

Método de	Diâmetro do varão	Recobrimento mínimo de betão c _{min} [mm]			
perfuração	nervurado	Sem auxílio de perfuração	Com auxílio de perfuração	รากสารสารสารสาร	
Perfuração com	φ < 25	$30 + 0.06 \cdot I_{V} \ge 2 \cdot \phi$	$30 + 0.02 \cdot I_{v} \ge 2 \cdot \phi$	- Caracacac	
martelo (HD)	φ ≥ 25	$40 + 0.06 \cdot I_{V} \ge 2 \cdot \phi$	$40 + 0.02 \cdot I_{v} \ge 2 \cdot \phi$		
Perfuração por ar	φ < 25	50 + 0,08 ⋅ I _v	50 + 0,02 ⋅ I _v		
comprimido (CA)	φ ≥ 25	$60 + 0.08 \cdot I_{V} \ge 2 \cdot \phi$	$60 + 0.02 \cdot I_{V} \ge 2 \cdot \phi$		
Furação por sistema	φ < 25	Coluna de	$30 + 0.02 \cdot I_{V} \ge 2 \cdot \phi$		
diamantado com água (PCC) a seco (DD)	φ≥25	perfuração funciona como um auxílio de perfuração	40 + 0,02 · l _v ≥ 2 · φ		

Diâmetros de perfuração e de limpeza

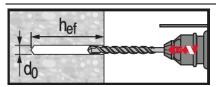
Varão	Diâmetro da broca d₀ [mm]			Furação por sistema diamantado d₀ [mm]		Diâmetro de instalação [mm]	
nervurado [mm]	Martelo eletropneumático	Perfuração com ar comprimido	Perfuração com broca oca ^{b)}	Húmido (DD)	Seco (PCC) ^{b)}	Escova HIT-RB	HIT-RB
<u> </u>		3**********		6			A PERSONAL
φ8	12 (10 ^{a)})	-	-	12 (10 ^{a)})	-	12 (10 ^{a)})	12 (10 ^{a)})
φ10	14 (12 ^{a)})	1	-	14 (12 ^{a)})	1	14 (12 ^{a)})	14 (12 ^{a)})
φ12	16 (14 ^{a)})	-	-	16 (14 ^{a)})	-	16 (14 ^{a)})	16 (14 ^{a)})
Ψ12	-	17	-	-	-	18	16
φ14	18	17	-	18	-	18	18
φ16	20	-	-	20	-	20	20
ψισ	-	20	-	-	-	22	20
φ18	22	22	-	22	-	22	22
φ20	25 (24 ^{a)})	-	-	25	-	25 (24 ^{a)})	25 (24 ^{a)})
•	-	26	-	-	-	28	25
φ22	28	28	-	28	-	28	28
φ24	32	32		32	-	32	
Ψ24	-	-	35	-	35	-	
φ25	32 (30a))	32 (30 ^{a)})	-	32 (30 ^{a)})	-	32 (30 ^{a)})	
·	-	-	35	-	35	-	
φ26	35	35	35	35	35	35	
φ28	35	35	35	35	35	35	
φ30	-	35	35	35	35	35	
φου	37	-	-	-		37	32
φ32	40	40	47	40	47	40	
φ34	-	42		42	47	42	
ψ34	45	-	47	-	41	45	
ф36	45	45			47	45	
ψου	-	-	47	47	71	47	
φ40	-	-	52	52		52	
Ψ4υ	55	57		-	32	55	

a) Ambos os valores dados podem ser utilizados

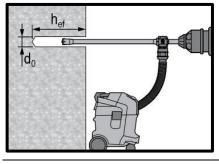
b) Não é necessário limpeza.

Dispensador e profundidade de embebimento correspondente $\ell_{v,max}$

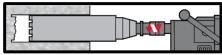
	Dispensador				
Varão nervurado	HDM 330, HDM 500	HDE 500			
	$\ell_{v,max}$ [mm]				
ф8 а ф10		1000			
φ12 a φ14	1000	1200			
ф16		1500			
φ18 a φ20	700	1300			
ф22 а ф25	700	1000			
φ26 a φ28	500	700			
ф30 а ф32	·				
ф34 а ф40	-	500			


Instruções de instalação

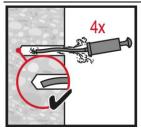
*Consultar as instruções de utilização na caixa do produto para obter informações detalhadas sobre a instalação

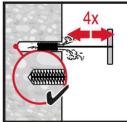

Regulamentos de segurança

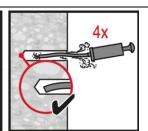
Consultar a Ficha de dados de segurança antes de aplicar o produto para garantir um manuseamento adequado e seguro. Deve usar óculos e luvas de proteção adequados quando trabalhar com o Hilti HIT-RE 100.


Furo executado por martelo

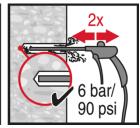
Para betão seco e húmido




Furo executado por martelo com broca oca

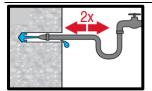

Não necessita de limpeza

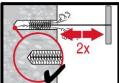
Furação por sistema diamantado (DD)

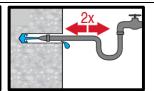


Perfuração com martelo eletropneumático:

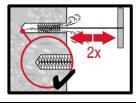
Limpeza manual para perfurações de diâmetros $d_0 \le 20$ mm e furos com profundidade $h_0 \le 10 \cdot d$




Perfuração com martelo eletropneumático:

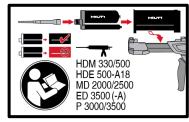

Limpeza com ar comprimido

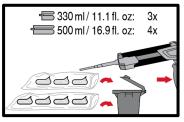
para perfurações de todos os diâmetros d_0 e todas as profundidades de furos $h_0 \le 20 \cdot d$

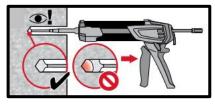


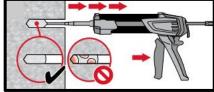
Furação por sistema diamantado com água:

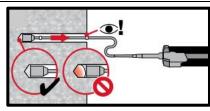
Limpeza com ar comprimido para perfurações de todos os diâmetros d₀ e todas as profundidades de furos

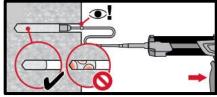


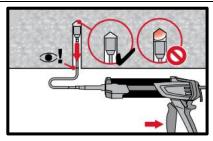


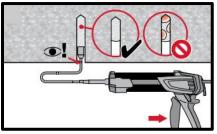

Furação por sistema diamantado a seco:

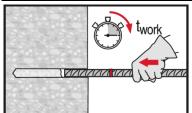

Limpeza com ar comprimido para perfurações de todos os diâmetros d₀ e todas as profundidades de furos

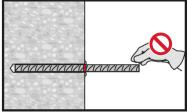


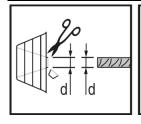

Preparação do sistema de injeção

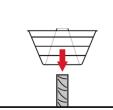


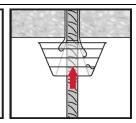

Sequência de injeção para profundidade do furo de h_{ef} > 250mm



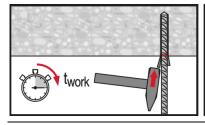

Sequência de injeção para profundidade do furo de h_{ef} > 250mm

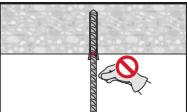


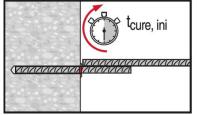

Sequência de **injeção** para aplicações acima do nível da cabeça

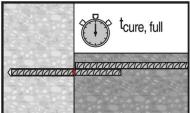


Ao instalar o elemento metálico, respeitar o tempo de atuação "twork"








Ao instalar o elemento metálico em aplicações acima do nível da cabeça, respeitar o tempo de atuação "twork"

Aplicar carga total apenas após o tempo de cura " t_{cure} ".