

Technisches Datenblatt

Hilti Brandschutz-Acryldichtmasse CFS-S ACR

Europäische Technische Zulassung ETA Nr. 10/0389 (Abdichtung von linearen Fugen) und ETA Nr. 10/0292 (Abschottung von Durchführungen)

Brandschutz-Acryldichtmasse CFS-S ACR

Brandschutzmasse auf Acrylbasis mit Bewegungsfähigkeit zur feuersicheren Abdichtung von linearen Fugen und Abschottung von Rohrdurchführungen

Anwendungen

- Innerhalb von oder zwischen Leichtbauwandkonstruktionen
- Vertikale Fugen in oder zwischen Wandkonstruktionen
- Horizontale Stoßfugen zwischen Wand und Decke, Wand und Boden oder Wand und Dach
- Fugen in Deckenkonstruktionen
- Abschottungen von Stahl- und Kupferrohren

Vorteile

- Einfach zu dosieren, aufzutragen und zu bearbeiten
- Starke Haftung auf verschiedenen Untergrundmaterialien
- Geringer Schwund nach dem Aushärten
- Ausgezeichnete Luftschalldämmung

Die europäische technische Zulassung (ETA) und das technische Datenblatt ist bei Ihrem Hilti-Partner vor Ort erhältlich.

Rauchdicht

Schalldämmung

Elektrischer Widerstand

Wasserdicht

Technische Daten

	CFS-S ACR
Chemische Basis	Acryldispersion auf Wasserbasis
Volumenschwund	< 20 %
Bewegung	12,5 % (ISO 11600)
Aushärtezeit (bei 23°C / 50 % rF)	~ 3 mm / 72 h
Anwendungstemperaturbereich	5°C - 40°C
Lager- und Transport- temperaturbereich	5°C – 25°C
Lagerfähigkeit (bei 23°C und 50% relativer Luftfeuchtigkeit)	24 Monate
Brandverhaltensklasse	D-s1d0 (EN13501-1)

Bestellbezeichnung	Verpackung	Volumen	Farbe	Verp. zu Stk.	Artikel-Nr.
Brandschutz-Acryldichtmasse CFS-S ACR CG	Kartusche	310 ml	Grau	1	02025237
Brandschutz-Acryldichtmasse CFS-S ACR CW	Kartusche	310 ml	Weiß	1	00435859
Brandschutz-Acryldichtmasse CFS-S ACR PW	Kübel	5000 ml	Weiß	1	00435864
Brandschutz-Acryldichtmasse CFS-S ACR PW 10 L	Kübel	10000 ml	Weiß	1	02046766

Montageanleitung

Fuge

Durchführung

Öffnung reinigen

Die Flächen, auf denen CFS-S ACR aufgebracht werden soll, müssen trocken und frei von losem Schmutz, Öl, Wachs und Fett sein. Gegebenenfalls mit einer Drahtbürste reinigen.

Hinterfüllmaterial einbringen

Falls erforderlich, Hinterfüllmaterial einbringen. Darauf achten, gemäß der europäischen technischen Zulassung (ETA) das richtige Hinterfüllmaterial zu verwenden und es richtig zu komprimieren.

CFS-S ACR einbauen

CFS-S ACR mit einem Auspressgerät (CFS-DISP) auftragen. CFS-S ACR haftet auf den meisten Untergründen (Beton, Mauerwerk, Trockenbauwand, Gips usw.) ohne Haftvermittler (Primer). Bei porösen Untergründen sollte CFS-S ACR mit Wasser als Haftvermittler verdünnt werden, um eine bessere Haftfestigkeit zu erzielen. Andere Haftvermittler sind nicht erforderlich.

CFS-S ACR glätten

Die Fuge mit Wasser und einem schmalen Spachtel oder den Fingern glätten.

Falls erforderlich, Ausführungsschild anbringen.

Hinweise zur Reinigung:

- Ausgehärtete Acryldichtmasse kann nur mechanisch entfernt werden z. B. mithilfe eines Messers, aber nicht mit Lösungsmittel.
- Nicht ausgehärtete Acryldichtmasse zuerst mechanisch entfernen, anschließend die Oberfläche mit Wasser reinigen.
- CFS-S ACR kann von porösen Oberflächen nicht vollständig entfernt werden Fugen sollten ggf. abgeklebt werden, um Verschmutzungen zu vermeiden.
- Auspressgerät und Werkzeuge müssen gereinigt werden, wenn die Arbeit für länger als ca. 20 Minuten unterbrochen wird.

Abdichtung von linearen Fugen

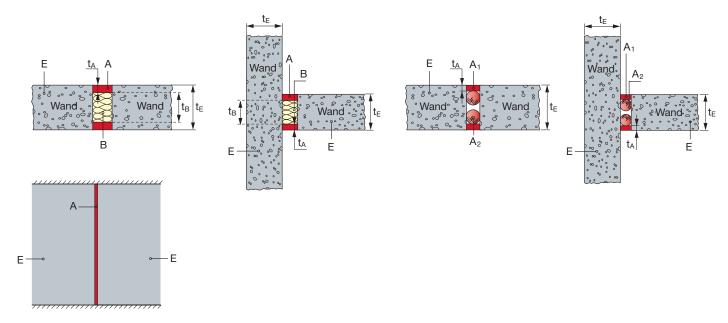
Massivwände | Decken

Hilti Brandschutz-Acryldichtmasse CFS-S ACR kann für Abdichtungen von linearen Fugen (A) in **Wänden und Decken in Massivbauweise** (E) mit einer minimalen Dichte von 2400 kg/m³ und einer minimalen Stärke von 150 mm (t_E) verwendet werden.

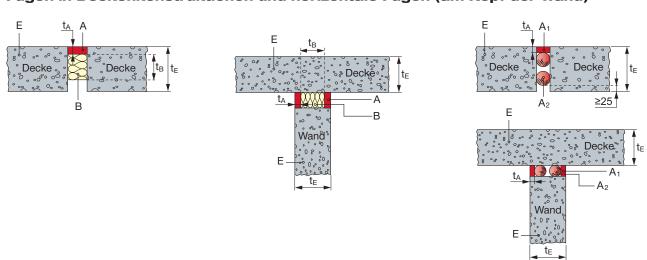
Hinterfüllmaterial (B): Mineralwolle mit CE-Kennzeichnung gemäß EN 13162 oder EN 14303, mit einer Dichte von 30 bis 70 kg/m³.

Ausrichtung der Fugen	Klassifizierung E = Raumabschluss I = Isolierung	Fugenbreite W (mm)	Stärke der Dichtmasse t _A (mm)	Bewegungs- fähigkeit	Andere Kriterien Beschreibung
Vertikale Fugen (A) in oder zwischen Wandkonstruktionen**	EI 180-V-M 12,5-F-W 6 bis 20 (E 240-V-M 12,5-F-W 6 bis 20)	6 bis 20	6	± 12,5 %	Hinterfüllung mit Mineralwolle (Stärke $t_B \ge 100$ mm), Kompression der Mineralwolle mind. 60 %
Fugen (A) in Deckenkon- struktionen* Horizontale Fugen (A) zwischen Wand und	EI 180-H-M 12,5-F-W 6 bis 20	6 bis 20	6	± 12,5 %	Hinterfüllung mit Mineralwolle (Stärke $t_B \ge 100$ mm), Kompression der Mineralwolle mind. 60 %
Decke, Wand und Boden oder Wand und Dach (Kopf der Wand)**	EI 120-H-M 12,5-F-W 20 bis 100 (E 180-H-M 12,5-F-W 20 bis 100)	20 bis 100	10	± 12,5 %	Hinterfüllung mit Mineralwolle (Stärke $t_B \ge 100$ mm), Kompression der Mineralwolle mind. 50 %

Hinterfüllmaterial (B): Hilti Brandschutz-Rundschnur CFS-CO


Ausrichtung der Fugen	Klassifizierung E = Raumabschluss I = Isolierung	Fugen- breite W (mm)	Rund- Schnurgröße (mm)	Stärke der Dichtmasse t _A (mm)	Bewegungs- fähigkeit	Andere Kriterien Beschreibung
Vertikale Fugen (A) in oder zwischen	El 180-V-X-F-W 12 bis 17 (E 240-V-X-F-W 12 bis 17)	12 bis 17	20	6	± 7,5 %	Bei zwei Rundschnur- Lagen muss ein Luft-
Wand- konstruktionen**	EI 180-V-X-F-W 17 bis 27 (E 240-V-X-F-W 17 bis 27)	17 bis 27	30	10		spalt zwischen den Schnüren freigelassen werden. Abstand
	EI 180-V-X-F-W 27 bis 37 (E 240-V-X-F-W 27 bis 37)	27 bis 37	40	10		zwischen den Stößen: ≥ 140 mm
	EI 180-V-X-F-W 37 bis 47 (E 240-V-X-F-W 37 bis 47)	37 bis 47	50	10		(Fugenbreite ≤ 17 mm), ≥ 450 mm
	EI 180-V-X-F-W 47 bis 55 (E 240-V-X-F-W 47 bis 55)	47 bis 55	60	10		(Fugenbreite > 17 mm)
Fugen (A) in Decken- konstruktionen* Horizontale Fugen (A) zwischen Wand und Decke, Wand und Boden oder Wand und Dach	EI 180-H-X-F-W 12 bis 17 EI 180-H-X-F-W 17 bis 27 EI 180-H-X-F-W 27 bis 37 EI 180-H-X-F-W 37 bis 47 EI 180-H-X-F-W 47 bis 55	12 bis 17 17 bis 27 27 bis 37 37 bis 47 47 bis 55	20 30 40 50 60	6 10 10 10 10	± 7,5 %	Bei zwei Rundschnur- Lagen muss ein Luft- spalt zwischen den Schnüren freigelassen werden. Abstand zwischen den Stößen: ≥ 645 mm
(Kopf der Wand)**	El 90-H-M 12,5-F-W 12 bis 17 El 90-H-M 12,5-F-W 17 bis 27 El 90-H-M 12,5-F-W 27 bis 37 El 90-H-M 12,5-F-W 37 bis 47 El 90-H-M 12,5-F-W 47 bis 55	12 bis 17 17 bis 27 27 bis 37 37 bis 47 47 bis 55	20 30 40 50 60	6 10 10 10 10	± 12,5 %	Mindestens zwei Rundschnüre mit Luft- spalt dazwischen und einem Mindestabstand von 25 mm von der Deckenoberfläche. Abstand zwischen den Stößen: ≥ 100 mm (Fugenbreite ≤ 30 mm)

^{*} Dichtmasse auf der Oberseite, ** Dichtmasse auf beiden Seiten

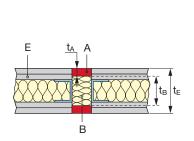

 $V = vertikal,\ M = Bewegung,\ F = Stoß,\ Feld,\ W = Fugenbreite,\ H = horizontal,\ X = nicht\ bewegliche\ Fuge\ (\pm\ 7,5\ \%)$

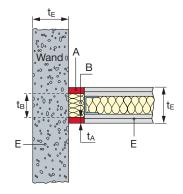
Vertikale Fugen in oder zwischen Wandkonstruktionen

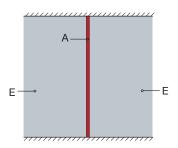
Fugen in Deckenkonstruktionen und horizontale Fugen (am Kopf der Wand)

Abdichtung von linearen Fugen

Leichtbauwände I Massivwände


Hilti Brandschutz-Acryldichtmasse CFS-S ACR kann für Abdichtungen von linearen Fugen (A) in Leichtbauwänden / Trockenbauwänden (E) mit einer Mindeststärke von 100 mm (t_F) mit Holz- oder Stahlunterkonstruktion, die beidseitig mit mindestens zwei Lagen aus 12,5 mm dicken Gipskartonplatten verkleidet sind. Bei Wänden mit Holzverstrebungen muss zwischen der Abschottung und jeder Strebe ein Mindestabstand von 100 mm eingehalten werden und der Hohlraum ist mit einer mindestens 100 mm dicken Isolierung der Klasse A1 oder A2 gemäß EN 13501-1 aufzufüllen.


Massivwänden (E) mit einer minimalen Dichte von 650 kg/m³ und einer minimalen Stärke von 100 mm (t₅).

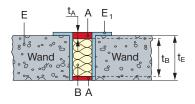

Hinterfüllmaterial (B): Mineralwolle mit CE-Kennzeichnung gemäß EN 13162 oder EN 14303, mit einer Dichte von 30 bis 70 kg/m³.

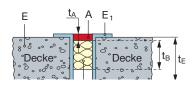
Ausrichtung der Fugen	Klassifizierung E = Raumabschluss I = Isolierung	Fugenbreite W (mm)	Stärke der Dichtmasse t _A (mm)	Bewegungs- fähigkeit	Andere Kriterien Beschreibung
Vertikale Fugen (A) in oder zwischen Wandkonstruktionen**	EI 120-V-X-F-W 10 bis 30	10 bis 30	10	± 7,5 %	Hinterfüllung mit Mineralwolle (Stärke t _B ≥ 100 mm), Kompression der Mineralwolle mind. 60 %, Abstand zwischen den Stößen: ≥ 1250 mm
Vertikale Fugen (A) zwischen Leichtbau- und Massivwandkonstruktionen**	El 120-V-X-F-W 10 bis 20	10 bis 20	10	± 7,5%	Hinterfüllung mit Mineralwolle (Stärke t _B ≥ 100 mm), Kompression der Mineralwolle mind. 60 %, Abstand zwischen den Stößen: ≥ 1250 mm

Vertikale Fugen in oder zwischen Wandkonstruktionen

 $^{^*}$ Dichtmasse auf der Oberseite, ** Dichtmasse auf beiden Seiten V = vertikal, F = Stoß, Feld, W = Fugenbreite, X = nicht bewegliche Fuge (± 7,5 %)

Abdichtung von linearen Fugen

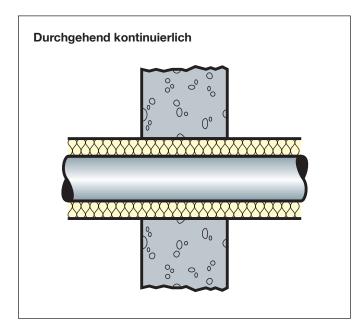

Stahlkonstruktionen/-elemente

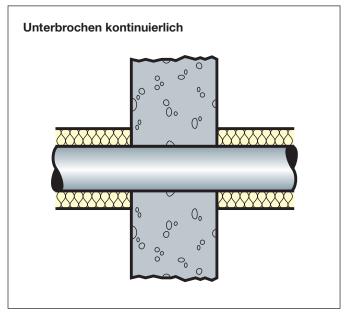

Hilti Brandschutz-Acryldichtmasse CFS-S ACR kann für Abdichtungen von linearen Fugen (A) zwischen Stahlbauelementen mit einer Fugentiefe von mindestens 150 mm oder zwischen Stahlelementen als Fugenflanken (E,) in Massivbaukonstruktionen (E) mit einer minimalen Dichte von 2400 kg/m³ und einer minimalen Stärke von 150 mm (t_E) verwendet werden.

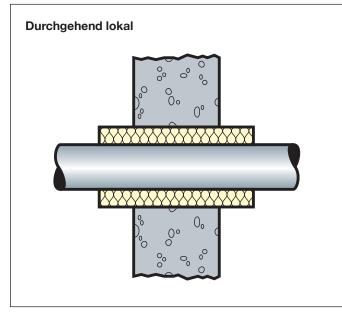
Hinterfüllmaterial (B): Mineralwolle mit CE-Kennzeichnung gemäß EN 13162 oder EN 14303, mit einer Dichte von 30 bis 70 kg/m³.

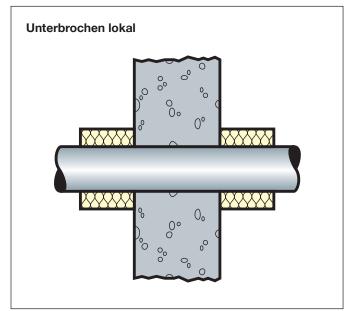
Ausrichtung der Fugen	Klassifizierung E = Raumabschluss I = Isolierung	Fugenbreite W (mm)	Stärke der Dichtmasse t _A (mm)	Bewegungs- fähigkeit	Andere Kriterien Beschreibung
Vertikale Fugen (A)**	EI 60-V-X-F-W 6 bis 20 (E 240-V-X-F-W 6 bis 20)	6 bis 20	6	± 7,5 %	Hinterfüllung mit Mineralwolle (Stärke t _B ≥ 100 mm), Kompression der Mineralwolle mind. 60 %, Abstand zwischen den Stößen: ≥ 1250 mm
	EI 60-V-X-F-W 20 bis 100 (E 240-V-X-F-W 20 bis 100)	20 bis 100	10	± 7,5 %	Hinterfüllung mit Mineralwolle (Stärke t _B ≥ 100 mm), Kompression der Mineralwolle mind. 50%, Abstand zwischen den Stößen: ≥ 1250 mm
Fugen (A) in Deckenkon- struktionen* Horizontale Fugen (A) zwischen Wand und Decke, Wand und Boden oder Wand und Dach (Kopf der Wand)**	EI 120-H-X-F-W 6 bis 20	6 bis 20	6	± 7,5 %	Hinterfüllung mit Mineralwolle (Stärke t _B ≥ 100 mm), Kompression der Mineralwolle mind. 60%, Abstand zwischen den Stößen: ≥ 1250 mm
	EI 60-H-X-F-W 20 bis 100 (E 120-H-X-F-W 20 bis 100)	20 bis 100	10	± 7,5 %	Hinterfüllung mit Mineralwolle (Stärke t _B ≥ 100 mm), Kompression der Mineralwolle mind. 50%, Abstand zwischen den Stößen: ≥ 1250 mm

Stahlkonstruktionen/-elemente


 $^{^*}$ Dichtmasse auf der Oberseite, ** Dichtmasse auf beiden Seiten V = vertikal, F = Stoß, Feld, W = Fugenbreite, H = horizontal, X = nicht bewegliche Fuge (± 7,5 %)




Metallrohrdurchführungen


Hilti Brandschutz-Acryldichtmasse CFS-S ACR kann für verschiedene Isolierungsarten und Mineralwollprodukte verwendet werden, die sich als Rohrisolierung eignen.

Rohrisolierungsarten

Produkte zur Rohrisolierung

Isover (Protect BSR 90 Alu), Paroc (PAROC Section AluCoat T), Rockwool (Conlit 150P, Klimarock, Rockwool 800 Rohrabschnitte).

Metallrohrdurchführungen

Leichtbauwände I Massivwände

Hilti Brandschutz-Acryldichtmasse CFS-S ACR kann für einfache Abschottungen (A) bis zu einem maximalen Schottdurchmesser von 300 mm mit einem Ringspalt (w_A) entsprechend dem Rohrdurchmesser verwendet werden (Mindestabstand zwischen den Abschottungen 200 mm):

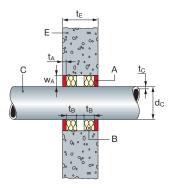
Leichtbauwände / Trockenbauwände (E) mit einer Mindeststärke von 100 mm (t_E) mit Holz- oder Stahlunterkonstruktion, die beidseitig mit mindestens zwei Lagen aus 12,5 mm dicken Gipskartonplatten verkleidet sind. Bei Wänden mit Holzverstrebungen muss zwischen der Abschottung und jeder Strebe ein Mindestabstand von 100 mm eingehalten werden und der Hohlraum ist mit einer mindestens 100 mm dicken Isolierung der Klasse A1 oder A2 gemäß EN 13501-1 aufzufüllen. **Massivwände** (E) aus Beton, Porenbeton oder Mauerwerk mit einer minimalen Dichte von 650 kg/m und einer minimalen Stärke von 100 mm (t_E).

Nicht isolierte Metallrohre in **Massivwänden** (E) aus Beton oder Mauerwerk mit einer minimalen Dichte von 2400 kg/m³ und einer minimalen Stärke von 150 mm ($t_{\rm F}$).

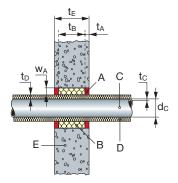
	Versorgungsleitungen (C)	Rohrisolierung (D) Dicke der Isolierung (t _D)	Klassifizierung E Raumabschluss I = Isolierung	Stärke der Dicht- masse t _A (mm)	Andere Kriterien Beschreibung
Nicht isoliert	Stahlrohre* 32 × 1,8 – 159 × 4,5 mm (d _o) (maximale Rohrwandstärke 14,2 mm (t _o))		E 180-C/U	15 (beidseitig)	Beidseitige Hinterfüllung mit Mineralwolle (Stärke $t_B \ge 50$ mm), Dichte ≥ 45 kg/m³ (B), Abstand Rohr zur Bauteillaibung w_A : 10,5 – 35,5 mm
	Stahlrohre* 33,7 mm (d _c) (Rohrwandstärke 2,6–14,2 mm (t _c))	Lokale Isolierung $t_D = 20 \text{mm}$, $L_D \ge 450 \text{mm}$ Kontinuierliche Isolierung $t_D \ge 20 \text{mm}$	EI 120-C/U	10 (beidseitig)	Vollständige Hinterfüllung mit Mineralwolle (t _B) Dichte ≥ 45 kg/m³ (B).
ng	Stahlrohre* 33,7 × 2,6 – 168,3 × 4,5 mm (d _c) (maximale Rohrwandstärke 14,2 mm (t _c))	Kontinuierliche Isolierung $t_D \ge 40 \text{ mm}$	EI 120-C/U	10 (beidseitig)	Vollständige Hinterfüllung mit Mineralwolle (t _B) Dichte ≥ 45 kg/m³ (B).
e Isolieru	Stahlrohre* 168,3 mm (d _o) (Rohrwandstärke 4,5 – 14,2 mm (t _o))	Lokale Isolierung $t_D = 40 \text{ mm}$, $L_D \ge 450 \text{ mm}$	EI 90-C/U (E 120-C/U)	10 (beidseitig)	Vollständige Hinterfüllung mit Mineralwolle (t _B) Dichte ≥ 45 kg/m³ (B).
Durchgehende Isolierung	Kupferrohre** 28 mm (Rohrwandstärke 1,0-14,2 mm (t _c))	Lokale Isolierung $t_D = 20 \text{mm}$, $L_D \ge 450 \text{mm}$ Kontinuierliche Isolierung $t_D \ge 20 \text{mm}$	EI 120-C/U	10 (beidseitig)	Vollständige Hinterfüllung mit Mineralwolle (t_B) Stärke t_B (t_B) Dichte \geq 45 kg/m³ (B).
Du	Kupferrohre** $28 \times 1,0 - 89 \times 2,0 \text{mm} (\text{d}_{\circ})$ (maximale Rohrwandstärke 14,2 mm (t_{\circ}))	Kontinuierliche Isolierung t _D ≥ 40 mm	EI 120-C/U	10 (beidseitig)	Vollständige Hinterfüllung mit Mineralwolle (t_B) Stärke t_B (t_B) Dichte \geq 45 kg/m³ (B).
	Kupferrohre** 89 mm (Rohrwandstärke 2,0 – 14,2 mm (t _c))	Lokale Isolierung $t_D = 40 \text{ mm}$, $L_D \ge 450 \text{ mm}$	EI 60-C/U (E 120-C/U)	10 (beidseitig)	Vollständige Hinterfüllung mit Mineralwolle (t_B) Stärke t_B (t_B) Dichte \geq 45 kg/m³ (B).

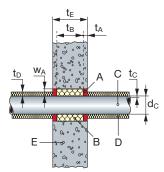
^{*} Klassifizierung auch gültig für andere Metallrohre mit einem Schmelzpunkt > 1050 °C und einer geringeren Wärmeleitfähigkeit als unlegierter Stahl, z. B. Gusseisen, Edelstahl, Ni-Legierungen (NiCu-, NiCr- und NiMo-Legierungen).

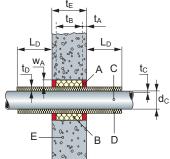
^{**} Klassifizierung auch gültig für andere Metallrohre mit einem Schmelzpunkt > 1050 °C und einer geringeren Wärmeleitfähigkeit als Kupfer, z. B. unlegierter Stahl, Gusseisen, Edelstahl, Ni und Ni-Legierungen (NiCu-, NiCr- und NiMo-Legierungen).

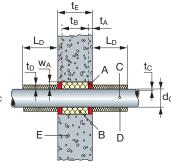


	Versorgungsleitungen (C)	Rohrisolierung (D) Dicke der Isolierung (t _D)	Klassifizierung E Raumabschluss I = Isolierung	Stärke der Dicht- masse t _A (mm)	Andere Kriterien Beschreibung
	Stahlrohre* 33,7 mm (d _c) (Rohrwandstärke $2,6-14,2$ mm (t _c))	Lokale Isolierung $t_D = 20 \text{mm}$, $L_D \ge 450 \text{mm}$ Kontinuierliche Isolierung $t_D \ge 20 \text{mm}$	EI 120-C/U	10 (beidseitig)	Vollständige Hinterfüllung mit Mineralwolle (t _B) Dichte ≥ 45 kg/m³ (B).
Bun.	Stahlrohre* $33.7 \times 2.6 - 168.3 \times 4.5 \text{mm (d}_{\odot})$ (maximale Rohrwandstärke $14.2 \text{mm (t}_{\odot})$)	Kontinuierliche Isolierung $t_D \ge 40 \text{ mm}$	EI 120-C/U	10 (beidseitig)	Vollständige Hinterfüllung mit Mineralwolle (t _B) Dichte ≥ 45 kg/m³ (B).
ne Isolier	Stahlrohre* 168,3 mm (d _o) (Rohrwandstärke 4,5 – 14,2 mm (t _o))	Lokale Isolierung $t_D = 40 \text{ mm}$, $L_D \ge 450 \text{ mm}$	EI 120-C/U	10 (beidseitig)	Vollständige Hinterfüllung mit Mineralwolle (t _B) Dichte ≥ 45 kg/m³ (B).
Unterbrochene Isolierung	Kupferrohre** 28 mm (d _o) (Rohrwandstärke 1,0–14,2 mm (t _o))	Lokale Isolierung $t_D = 20 \text{mm}$, $L_D \ge 450 \text{mm}$ Kontinuierliche Isolierung $t_D \ge 20 \text{mm}$	EI 120-C/U	10 (beidseitig)	Vollständige Hinterfüllung mit Mineralwolle (t _B) Dichte ≥ 45 kg/m³ (B).
ס	Kupferrohre** 28 × 1,0 – 89 mm (d _o) (maximale Rohrwandstärke 14,2 mm (t _o))	Kontinuierliche Isolierung $t_D \ge 40 \text{ mm}$	EI 120-C/U	10 (beidseitig)	Vollständige Hinterfüllung mit Mineralwolle (t _B) Dichte ≥ 45 kg/m³ (B).
	Kupferrohre** 89 mm (d _c) (Rohrwandstärke 2,0–14,2 mm (t _c))	Lokale Isolierung $t_D = 40 \text{ mm}$, $L_D \ge 450 \text{ mm}$	EI 120-C/U	10 (beidseitig)	Vollständige Hinterfüllung mit Mineralwolle (t _B) Dichte ≥ 45 kg/m³ (B).

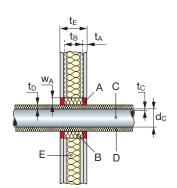

 ^{*} Klassifizierung auch gültig für andere Metallrohre mit einem Schmelzpunkt > 1050 °C und einer geringeren Wärmeleitfähigkeit als unlegierter Stahl, z. B. Gusseisen, Edelstahl, Ni-Legierungen (NiCu-, NiCr- und NiMo-Legierungen).
 ** Klassifizierung auch gültig für andere Metallrohre mit einem Schmelzpunkt > 1050 °C und einer geringeren Wärmeleitfähigkeit als Kupfer, z. B. unlegierter Stahl, Gusseisen, Edelstahl, Ni und Ni-Legierungen (NiCu-, NiCr- und NiMo-Legierungen).


Massivwand

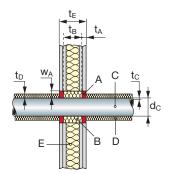

nicht isoliert


Isolierung kontinuierlich, durchgehend

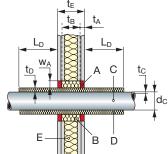
Isolierung kontinuierlich, unterbrochen

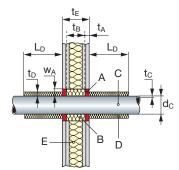


Isolierung lokal, durchgehend



Isolierung lokal, unterbrochen


Leichtbauwand


Isolierung kontinuierlich, durchgehend

Isolierung kontinuierlich, unterbrochen

Isolierung lokal, durchgehend

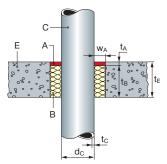
Isolierung lokal, unterbrochen

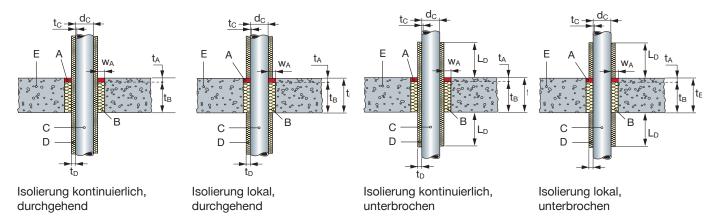
Metallrohrdurchführungen

Decke

Hilti Brandschutz-Acryldichtmasse CFS-S ACR kann für Abschottungen (A) in **Decken in Massivbauweise** (E) aus Beton oder Mauerwerk mit einer minimalen Dichte von 2400 kg/m³ und einer minimalen Stärke von 150 mm (t_E) verwendet werden.

	Versorgungsleitungen (C)	Rohrisolierung (D) Dicke der Isolierung (t _D)	Klassifizierung E Raumabschluss I = Isolierung	Stärke der Dichtmasse t _A (mm)	Andere Kriterien Beschreibung
Nicht isoliert	Stahlrohre* 32 × 1,8 – 159 mm (d _c) (maximale Rohrwandstärke 14,2 mm (t _c))		E 180-C/U	15 (Oberseite)	Beidseitige Hinterfüllung mit Mineralwolle (Stärke $t_B \ge 150$ mm), Dichte 45 kg/m³ (B), Abstand Rohr zur Bauteillaibung w_A : 19,0-35,5 mm
	Stahlrohre* 33,7 mm (d _o) (Rohrwandstärke 2,6–14,2 mm (t _o))	Lokale Isolierung t_D = 20 mm, L_D ≥ 425 mm Kontinuierliche Isolierung t_D ≥ 20 mm	EI 180-C/U	10 (Oberseite)	Beidseitige Hinterfüllung mit Mineralwolle (Stärke $t_B \ge 150$ mm), Dichte 45 kg/m³ (B), Abstand Rohr zur Bauteillaibung w_A : 30 – 45 mm
	Stahlrohre* 33,7 × 2,6 – 168,3 × 4,5 mm (d _c) (maximale Rohrwandstärke 14,2 mm (t _c))	Kontinuierliche Isolierung $t_{\rm D} \ge 40{\rm mm}$	EI 180-C/U	10 (Oberseite)	Beidseitige Hinterfüllung mit Mineralwolle (Stärke t _B ≥ 150 mm), Dichte 45 kg/m³ (B), Abstand Rohr zur Bauteillaibung w _A : 30 - 45 mm
Durchgehende Isolierung	Stahlrohre* 168,3 mm (d_c) (Rohrwandstärke 4,5 – 14,2 mm (t_c))	Lokale Isolierung $t_D = 40 \text{ mm}$, $L_D \ge 425 \text{ mm}$	EI 120-C/U (E 180-C/U)	10 (Oberseite)	Beidseitige Hinterfüllung mit Mineralwolle (Stärke t _B ≥ 150 mm), Dichte 45 kg/m³ (B), Abstand Rohr zur Bauteillaibung w _A : 30-45 mm
Durchgehend	Kupferrohre** 28 mm (d _o) (Rohrwandstärke ≥ 1 mm (t _o))	Lokale Isolierung t_D = 20 mm, $L_D \ge 425$ mm Kontinuierliche Isolierung $t_D \ge 20$ mm	EI 180-C/U	10 (Oberseite)	Beidseitige Hinterfüllung mit Mineralwolle (Stärke t _B ≥ 150 mm), Dichte 45 kg/m³ (B), Abstand Rohr zur Bauteillaibung w _A : 30 – 40 mm
	Kupferrohre** 28 × 1,0 – 89 × 2,0 mm (d _c) (maximale Rohrwandstärke 14,2 mm (t _c))	Kontinuierliche Isolierung $t_D \ge 40 \text{ mm}$	EI 180-C/U	10 (Oberseite)	Beidseitige Hinterfüllung mit Mineralwolle (Stärke t _B ≥ 150 mm), Dichte 45 kg/m³ (B), Abstand Rohr zur Bauteillaibung w _A : 30 – 40 mm
	Kupferrohre** 89 mm (d _o) (Rohrwandstärke 2,0 – 14,2 mm (t _o))	Lokale Isolierung $t_D = 40 \text{ mm}$, $L_D \ge 425 \text{ mm}$	EI 120-C/U (E 180-C/U)	10 (Oberseite)	Beidseitige Hinterfüllung mit Mineralwolle (Stärke t _B ≥ 150 mm), Dichte 45 kg/m³ (B), Abstand Rohr zur Bauteillaibung w _A : 30 – 40 mm


 ^{*} Klassifizierung auch gültig für andere Metallrohre mit einem Schmelzpunkt > 1050 °C und einer geringeren Wärmeleitfähigkeit als unlegierter Stahl, z. B. Gusseisen, Edelstahl, Ni-Legierungen (NiCu-, NiCr- und NiMo-Legierungen).
 ** Klassifizierung auch gültig für andere Metallrohre mit einem Schmelzpunkt > 1050 °C und einer geringeren Wärmeleitfähigkeit als Kupfer, z. B. unlegierter Stahl, Gusseisen, Edelstahl, Ni und Ni-Legierungen (NiCu-, NiCr- und NiMo-Legierungen).


	Versorgungsleitungen (C)	Rohrisolierung (D) Dicke der Isolierung (t _D)	Klassifizierung E Raumabschluss I = Isolierung	Stärke der Dichtmasse t _A (mm)	Andere Kriterien Beschreibung
	Stahlrohre* 33,7 mm (d _c) (Rohrwandstärke 2,6 – 14,2 mm (t _c))	Lokale Isolierung t_D = 20 mm, $L_D \ge 500$ mm Kontinuierliche Isolierung $t_D \ge 20$ mm	EI 180-C/U	10 (Oberseite)	Beidseitige Hinterfüllung mit Mineralwolle (Stärke $t_B \ge 150$ mm), Dichte 45 kg/m³ (B), Abstand Rohr zur Bauteillaibung w_A : 30 – 45 mm
	Stahlrohre* 33,7 × 2,6 – 168,3 × 4,5 mm (d_c) (maximale Rohrwandstärke 14,2 mm (t_c))	Kontinuierliche Isolierung $t_D \ge 40 \text{ mm}$	EI 120-C/U (E 180-C/U)	10 (Oberseite)	Beidseitige Hinterfüllung mit Mineralwolle (Stärke t _B ≥ 150 mm), Dichte 45 kg/m³ (B), Abstand Rohr zur Bauteillaibung w _A : 30-45 mm
ne Isolierung	Stahlrohre* 168,3 mm (d _c) (Rohrwandstärke 4,5 – 14,2 mm (t _c))	Lokale Isolierung $t_D = 40 \text{ mm}$, $L_D \ge 500 \text{ mm}$	EI 120-C/U (E 180-C/U)	10 (Oberseite)	Beidseitige Hinterfüllung mit Mineralwolle (Stärke t _B ≥ 150 mm), Dichte 45 kg/m³ (B), Abstand Rohr zur Bauteillaibung w _A : 30-45 mm
Unterbrochene Isolierung	Kupferrohre** 28 mm (d _c) (Rohrwandstärke 1,0 – 14,2 mm (t _c))	Lokale Isolierung t_D = 20 mm, $L_D \ge 500$ mm Kontinuierliche Isolierung $t_D \ge 20$ mm	EI 120-C/U (E 180-C/U)	10 (Oberseite)	Beidseitige Hinterfüllung mit Mineralwolle (Stärke t _B ≥ 150 mm), Dichte 45 kg/m³ (B), Abstand Rohr zur Bauteillaibung w _A : 30-45 mm
	Kupferrohre** 28 × 1,0 – 89 × 2,0 mm (d _.) (maximale Rohrwandstärke 14,2 mm (t _.))	Kontinuierliche Isolierung $t_D \ge 40 \text{ mm}$	EI 120-C/U (E 180-C/U)	10 (Oberseite)	Beidseitige Hinterfüllung mit Mineralwolle (Stärke t _B ≥ 150 mm), Dichte 45 kg/m³ (B), Abstand Rohr zur Bauteillaibung w _A : 30-40 mm
	Kupferrohre** 89 mm (d _c) (Rohrwandstärke 2,0 – 14,2 mm (t _c))	Lokale Isolierung t_D = 40 mm, $L_D \ge 500$ mm Kontinuierliche Isolierung $t_D \ge 40$ mm	EI 180-C/U	10 (Oberseite)	Beidseitige Hinterfüllung mit Mineralwolle (Stärke t _B ≥ 150 mm), Dichte 45 kg/m³ (B), Abstand Rohr zur Bauteillaibung w _A : 30 – 40 mm

Klassifizierung auch gültig für andere Metallrohre mit einem Schmelzpunkt > 1050 °C und einer geringeren Wärmeleitfähigkeit als unlegierter Stahl, z. B. Gusseisen, Edel-

Decke

nicht isoliert

stahl, Ni-Legierungen (NiCu-, NiCr- und NiMo-Legierungen).

** Klassifizierung auch gültig für andere Metallrohre mit einem Schmelzpunkt > 1050 °C und einer geringeren Wärmeleitfähigkeit als Kupfer, z. B. unlegierter Stahl, Gusseisen, Edelstahl, Ni und Ni-Legierungen (NiCu-, NiCr- und NiMo-Legierungen).

Eigenschaften von CFS-S ACR

Zusätzliche Eigenschaften

Hilti Brandschutzprodukte sind umfassend geprüft und individuell auf die technischen Anforderungen der mechanischen und elektrischen Installationen eines Gebäudes abgestimmt. Neben ihrer überragenden Leistung im passiven Brandschutz erfüllen Hilti Brandschutzprodukte auch die immer wichtiger werdenden Anforderungen der Gebäudetechnik und helfen Planern und Installateuren dabei, diese zusätzlichen Anforderungen einzuhalten. Die Beurteilung der Gebrauchstauglichkeit erfolgte in Übereinstimmung mit EOTA ETAG Nr. 026 – Teil 2 und Teil 3.

Eigenschaften	Beurteilung der Eigenschaften	Norm, Standard, Prüfung	
Gesundheits- und Umweltschutz Luft-/Gasdurchlässigkeit	q/A [m³/(h x m²)] at Δ p50 Pa: Luft: 1,9 × 10 ⁻⁶ Stickstoff (N₂): 1,1 × 10 ⁻⁶ CO₂: 6,4 × 10 ⁻⁵ Methan (CH₄): 4,3 × 10 ⁻⁵ q/A [m³/(h x m²)] at Δ p250 Pa: Luft: 9,7 × 10 ⁻⁶ Stickstoff (N₂): 5,5 × 10 ⁻⁶ CO₂: 3,2 × 10 ⁻⁴ Methan (CH₄): 2,1 × 10 ⁻⁴ (CFS-S ACR 10 mm dick)	EN 1026	
Wasserdurchlässigkeit	Wasserdicht bis 1 m Wassersäule oder 9806 Pa	ETAG 026-2	
Gefährliche Stoffe	CFS-ACR erfüllt die Verordnung zur Registrierung, Bewertung, Zulassung und Beschränkung von Chemikalien (REACH). Es werden keine toxischen, karzinogenen, reproduktionstoxischen und mutagenen chemischen Substanzen der Kategorie 1 und 2 ≥ 0,1 % verwendet.	Sicherheitsdatenblatt	
Schallschutz (Luftschalldämmung)	Leichtbauwand $R_w = 53 \text{ dB}$ $D_{n,w} = 60 \text{ dB}$ Massivwand $R_w = 51 \text{ dB}$ $D_{n,w} = 58 \text{ dB}$	EN ISO 140-3 EN ISO 20140-10 EN ISO 717-1	
Dauerhaftigkeit und Gebrauchstauglichkeit	Kategorie Y _{2,(-5/+70)°C} (geeignet zur Verwendung bei Temperaturen zwischen – 5°C und + 70°C, keine Einwirkung von Regen oder UV-Strahlen)	ETAG 026-2 and 3	
Bewegungsfähigkeit (lineare Fugen)	Klasse ISO 11600-F-12.5P	ISO 11600	
Elektrische Eigenschaften	Spezifischer Durchgangswiderstand 11,3 × 10 ¹¹ ± 3,6 × 10 ¹¹ Ohm Spezifischer Oberflächenwiderstand 8,5 × 10 ⁶ ± 2,4 × 10 ⁶ Ohm	DIN IEC 60093 (VDE 0303 Part 30)	
Brandverhalten	Class D-s1 d0	EN 13501-1	

Service

Hilti ist ein führender Anbieter von Brandschutzsystemen mit über 20 Jahren Erfahrung weltweit. Wir helfen Ihnen aktiv, die Ausführung Ihrer Brandschutzprojekte zu verbessern, indem wir Folgendes bereitstellen:

- Schnelle technische Beurteilungen
- Umfangreiche technische Literatur
- Schulungen und Demonstrationen vor Ort
- Durchdachte Baustellenlogistik
- Sicherstellung der Erfüllung anwendungsspezifischer Anforderungen
- Internationales Netzwerk von Hilti Brandschutzexperten

Unser Netzwerk von erfahrenen Verkaufsmitarbeitern, Beratungsingenieuren, Brandschutzexperten und Kundendienstmitarbeitern ist nur einen Telefonanruf entfernt (unter der lokalen, gebührenfreien Hilti Servicenummer erreichbar).

